Working with groups#
Zarr supports hierarchical organization of arrays via groups. As with arrays, groups can be stored in memory, on disk, or via other storage systems that support a similar interface.
To create a group, use the zarr.group()
function:
>>> import zarr
>>> store = zarr.storage.MemoryStore()
>>> root = zarr.create_group(store=store)
>>> root
<Group memory://...>
Groups have a similar API to the Group class from h5py. For example, groups can contain other groups:
>>> foo = root.create_group('foo')
>>> bar = foo.create_group('bar')
Groups can also contain arrays, e.g.:
>>> z1 = bar.create_array(name='baz', shape=(10000, 10000), chunks=(1000, 1000), dtype='int32')
>>> z1
<Array memory://.../foo/bar/baz shape=(10000, 10000) dtype=int32>
Members of a group can be accessed via the suffix notation, e.g.:
>>> root['foo']
<Group memory://.../foo>
The ‘/’ character can be used to access multiple levels of the hierarchy in one call, e.g.:
>>> root['foo/bar']
<Group memory://.../foo/bar>
>>> root['foo/bar/baz']
<Array memory://.../foo/bar/baz shape=(10000, 10000) dtype=int32>
The zarr.Group.tree()
method can be used to print a tree
representation of the hierarchy, e.g.:
>>> root.tree()
/
└── foo
└── bar
└── baz (10000, 10000) int32
The zarr.open_group()
function provides a convenient way to create or
re-open a group stored in a directory on the file-system, with sub-groups stored in
sub-directories, e.g.:
>>> root = zarr.open_group('data/group.zarr', mode='w')
>>> root
<Group file://data/group.zarr>
>>>
>>> z = root.create_array(name='foo/bar/baz', shape=(10000, 10000), chunks=(1000, 1000), dtype='int32')
>>> z
<Array file://data/group.zarr/foo/bar/baz shape=(10000, 10000) dtype=int32>
For more information on groups see the zarr.Group
API docs.
Array and group diagnostics#
Diagnostic information about arrays and groups is available via the info
property. E.g.:
>>> store = zarr.storage.MemoryStore()
>>> root = zarr.group(store=store)
>>> foo = root.create_group('foo')
>>> bar = foo.create_array(name='bar', shape=1000000, chunks=100000, dtype='int64')
>>> bar[:] = 42
>>> baz = foo.create_array(name='baz', shape=(1000, 1000), chunks=(100, 100), dtype='float32')
>>> baz[:] = 4.2
>>> root.info
Name :
Type : Group
Zarr format : 3
Read-only : False
Store type : MemoryStore
>>> foo.info
Name : foo
Type : Group
Zarr format : 3
Read-only : False
Store type : MemoryStore
>>> bar.info_complete()
Type : Array
Zarr format : 3
Data type : DataType.int64
Shape : (1000000,)
Chunk shape : (100000,)
Order : C
Read-only : False
Store type : MemoryStore
Filters : ()
Serializer : BytesCodec(endian=<Endian.little: 'little'>)
Compressors : (ZstdCodec(level=0, checksum=False),)
No. bytes : 8000000 (7.6M)
No. bytes stored : 1614
Storage ratio : 4956.6
Chunks Initialized : 0
>>> baz.info
Type : Array
Zarr format : 3
Data type : DataType.float32
Shape : (1000, 1000)
Chunk shape : (100, 100)
Order : C
Read-only : False
Store type : MemoryStore
Filters : ()
Serializer : BytesCodec(endian=<Endian.little: 'little'>)
Compressors : (ZstdCodec(level=0, checksum=False),)
No. bytes : 4000000 (3.8M)
Groups also have the zarr.Group.tree()
method, e.g.:
>>> root.tree()
/
└── foo
├── bar (1000000,) int64
└── baz (1000, 1000) float32
Note
zarr.Group.tree()
requires the optional rich
dependency. It can be installed with the [tree]
extra.