Working with arrays#

Creating an array#

Zarr has several functions for creating arrays. For example:

>>> import zarr
>>> store = zarr.storage.MemoryStore()
>>> z = zarr.create_array(store=store, shape=(10000, 10000), chunks=(1000, 1000), dtype='int32')
>>> z
<Array memory://... shape=(10000, 10000) dtype=int32>

The code above creates a 2-dimensional array of 32-bit integers with 10000 rows and 10000 columns, divided into chunks where each chunk has 1000 rows and 1000 columns (and so there will be 100 chunks in total). The data is written to a zarr.storage.MemoryStore (e.g. an in-memory dict). See Persistent arrays for details on storing arrays in other stores.

For a complete list of array creation routines see the zarr module documentation.

Reading and writing data#

Zarr arrays support a similar interface to NumPy arrays for reading and writing data. For example, the entire array can be filled with a scalar value:

>>> z[:] = 42

Regions of the array can also be written to, e.g.:

>>> import numpy as np
>>>
>>> z[0, :] = np.arange(10000)
>>> z[:, 0] = np.arange(10000)

The contents of the array can be retrieved by slicing, which will load the requested region into memory as a NumPy array, e.g.:

>>> z[0, 0]
array(0, dtype=int32)
>>> z[-1, -1]
array(42, dtype=int32)
>>> z[0, :]
array([   0,    1,    2, ..., 9997, 9998, 9999],
      shape=(10000,), dtype=int32)
>>> z[:, 0]
array([   0,    1,    2, ..., 9997, 9998, 9999],
      shape=(10000,), dtype=int32)
>>> z[:]
array([[   0,    1,    2, ..., 9997, 9998, 9999],
       [   1,   42,   42, ...,   42,   42,   42],
       [   2,   42,   42, ...,   42,   42,   42],
       ...,
       [9997,   42,   42, ...,   42,   42,   42],
       [9998,   42,   42, ...,   42,   42,   42],
       [9999,   42,   42, ...,   42,   42,   42]],
      shape=(10000, 10000), dtype=int32)

Read more about NumPy-style indexing can be found in the NumPy documentation.

Persistent arrays#

In the examples above, compressed data for each chunk of the array was stored in main memory. Zarr arrays can also be stored on a file system, enabling persistence of data between sessions. To do this, we can change the store argument to point to a filesystem path:

>>> z1 = zarr.create_array(store='data/example-1.zarr', shape=(10000, 10000), chunks=(1000, 1000), dtype='int32')

The array above will store its configuration metadata and all compressed chunk data in a directory called 'data/example-1.zarr' relative to the current working directory. The zarr.create_array() function provides a convenient way to create a new persistent array or continue working with an existing array. Note, there is no need to close an array: data are automatically flushed to disk, and files are automatically closed whenever an array is modified.

Persistent arrays support the same interface for reading and writing data, e.g.:

>>> z1[:] = 42
>>> z1[0, :] = np.arange(10000)
>>> z1[:, 0] = np.arange(10000)

Check that the data have been written and can be read again:

>>> z2 = zarr.open_array('data/example-1.zarr', mode='r')
>>> np.all(z1[:] == z2[:])
np.True_

If you are just looking for a fast and convenient way to save NumPy arrays to disk then load back into memory later, the functions zarr.save() and zarr.load() may be useful. E.g.:

>>> a = np.arange(10)
>>> zarr.save('data/example-2.zarr', a)
>>> zarr.load('data/example-2.zarr')
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Please note that there are a number of other options for persistent array storage, see the Storage Guide guide for more details.

Resizing and appending#

A Zarr array can be resized, which means that any of its dimensions can be increased or decreased in length. For example:

>>> z = zarr.create_array(store='data/example-3.zarr', shape=(10000, 10000), dtype='int32',chunks=(1000, 1000))
>>> z[:] = 42
>>> z.shape
(10000, 10000)
>>> z.resize((20000, 10000))
>>> z.shape
(20000, 10000)

Note that when an array is resized, the underlying data are not rearranged in any way. If one or more dimensions are shrunk, any chunks falling outside the new array shape will be deleted from the underlying store.

zarr.Array.append() is provided as a convenience function, which can be used to append data to any axis. E.g.:

>>> a = np.arange(10000000, dtype='int32').reshape(10000, 1000)
>>> z = zarr.create_array(store='data/example-4.zarr', shape=a.shape, dtype=a.dtype, chunks=(1000, 100))
>>> z[:] = a
>>> z.shape
(10000, 1000)
>>> z.append(a)
(20000, 1000)
>>> z.append(np.vstack([a, a]), axis=1)
(20000, 2000)
>>> z.shape
(20000, 2000)

Compressors#

A number of different compressors can be used with Zarr. Zarr includes Blosc, Zstandard and Gzip compressors. Additional compressors are available through a separate package called NumCodecs which provides various compressor libraries including LZ4, Zlib, BZ2 and LZMA. Different compressors can be provided via the compressors keyword argument accepted by all array creation functions. For example:

>>> compressors = zarr.codecs.BloscCodec(cname='zstd', clevel=3, shuffle=zarr.codecs.BloscShuffle.bitshuffle)
>>> data = np.arange(100000000, dtype='int32').reshape(10000, 10000)
>>> z = zarr.create_array(store='data/example-5.zarr', shape=data.shape, dtype=data.dtype, chunks=(1000, 1000), compressors=compressors)
>>> z[:] = data
>>> z.compressors
(BloscCodec(typesize=4, cname=<BloscCname.zstd: 'zstd'>, clevel=3, shuffle=<BloscShuffle.bitshuffle: 'bitshuffle'>, blocksize=0),)

This array above will use Blosc as the primary compressor, using the Zstandard algorithm (compression level 3) internally within Blosc, and with the bit-shuffle filter applied.

When using a compressor, it can be useful to get some diagnostics on the compression ratio. Zarr arrays provide the zarr.Array.info property which can be used to print useful diagnostics, e.g.:

>>> z.info
Type               : Array
Zarr format        : 3
Data type          : DataType.int32
Shape              : (10000, 10000)
Chunk shape        : (1000, 1000)
Order              : C
Read-only          : False
Store type         : LocalStore
Filters            : ()
Serializer         : BytesCodec(endian=<Endian.little: 'little'>)
Compressors        : (BloscCodec(typesize=4, cname=<BloscCname.zstd: 'zstd'>, clevel=3, shuffle=<BloscShuffle.bitshuffle: 'bitshuffle'>, blocksize=0),)
No. bytes          : 400000000 (381.5M)

The zarr.Array.info_complete() method inspects the underlying store and prints additional diagnostics, e.g.:

>>> z.info_complete()
Type               : Array
Zarr format        : 3
Data type          : DataType.int32
Shape              : (10000, 10000)
Chunk shape        : (1000, 1000)
Order              : C
Read-only          : False
Store type         : LocalStore
Filters            : ()
Serializer         : BytesCodec(endian=<Endian.little: 'little'>)
Compressors        : (BloscCodec(typesize=4, cname=<BloscCname.zstd: 'zstd'>, clevel=3, shuffle=<BloscShuffle.bitshuffle: 'bitshuffle'>, blocksize=0),)
No. bytes          : 400000000 (381.5M)
No. bytes stored   : 9696520
Storage ratio      : 41.3
Chunks Initialized : 100

Note

zarr.Array.info_complete() will inspect the underlying store and may be slow for large arrays. Use zarr.Array.info if detailed storage statistics are not needed.

If you don’t specify a compressor, by default Zarr uses the Zstandard compressor.

In addition to Blosc and Zstandard, other compression libraries can also be used. For example, here is an array using Gzip compression, level 1:

>>> data = np.arange(100000000, dtype='int32').reshape(10000, 10000)
>>> z = zarr.create_array(store='data/example-6.zarr', shape=data.shape, dtype=data.dtype, chunks=(1000, 1000), compressors=zarr.codecs.GzipCodec(level=1))
>>> z[:] = data
>>> z.compressors
(GzipCodec(level=1),)

Here is an example using LZMA from NumCodecs with a custom filter pipeline including LZMA’s built-in delta filter:

>>> import lzma
>>> from numcodecs.zarr3 import LZMA
>>>
>>> lzma_filters = [dict(id=lzma.FILTER_DELTA, dist=4), dict(id=lzma.FILTER_LZMA2, preset=1)]
>>> compressors = LZMA(filters=lzma_filters)
>>> data = np.arange(100000000, dtype='int32').reshape(10000, 10000)
>>> z = zarr.create_array(store='data/example-7.zarr', shape=data.shape, dtype=data.dtype, chunks=(1000, 1000), compressors=compressors)
>>> z.compressors
(LZMA(codec_name='numcodecs.lzma', codec_config={'filters': [{'id': 3, 'dist': 4}, {'id': 33, 'preset': 1}]}),)

The default compressor can be changed by setting the value of the using Zarr’s Runtime configuration, e.g.:

>>> with zarr.config.set({'array.v2_default_compressor.numeric': {'id': 'blosc'}}):
...     z = zarr.create_array(store={}, shape=(100000000,), chunks=(1000000,), dtype='int32', zarr_format=2)
>>> z.filters
()
>>> z.compressors
(Blosc(cname='lz4', clevel=5, shuffle=SHUFFLE, blocksize=0),)

To disable compression, set compressors=None when creating an array, e.g.:

>>> z = zarr.create_array(store='data/example-8.zarr', shape=(100000000,), chunks=(1000000,), dtype='int32', compressors=None)
>>> z.compressors
()

Filters#

In some cases, compression can be improved by transforming the data in some way. For example, if nearby values tend to be correlated, then shuffling the bytes within each numerical value or storing the difference between adjacent values may increase compression ratio. Some compressors provide built-in filters that apply transformations to the data prior to compression. For example, the Blosc compressor has built-in implementations of byte- and bit-shuffle filters, and the LZMA compressor has a built-in implementation of a delta filter. However, to provide additional flexibility for implementing and using filters in combination with different compressors, Zarr also provides a mechanism for configuring filters outside of the primary compressor.

Here is an example using a delta filter with the Blosc compressor:

>>> from numcodecs.zarr3 import Delta
>>>
>>> filters = [Delta(dtype='int32')]
>>> compressors = zarr.codecs.BloscCodec(cname='zstd', clevel=1, shuffle=zarr.codecs.BloscShuffle.shuffle)
>>> data = np.arange(100000000, dtype='int32').reshape(10000, 10000)
>>> z = zarr.create_array(store='data/example-9.zarr', shape=data.shape, dtype=data.dtype, chunks=(1000, 1000), filters=filters, compressors=compressors)
>>> z.info
Type               : Array
Zarr format        : 3
Data type          : DataType.int32
Shape              : (10000, 10000)
Chunk shape        : (1000, 1000)
Order              : C
Read-only          : False
Store type         : LocalStore
Filters            : (Delta(codec_name='numcodecs.delta', codec_config={'dtype': 'int32'}),)
Serializer         : BytesCodec(endian=<Endian.little: 'little'>)
Compressors        : (BloscCodec(typesize=4, cname=<BloscCname.zstd: 'zstd'>, clevel=1, shuffle=<BloscShuffle.shuffle: 'shuffle'>, blocksize=0),)
No. bytes          : 400000000 (381.5M)

For more information about available filter codecs, see the Numcodecs documentation.

Advanced indexing#

Zarr arrays support several methods for advanced or “fancy” indexing, which enable a subset of data items to be extracted or updated in an array without loading the entire array into memory.

Note that although this functionality is similar to some of the advanced indexing capabilities available on NumPy arrays and on h5py datasets, the Zarr API for advanced indexing is different from both NumPy and h5py, so please read this section carefully. For a complete description of the indexing API, see the documentation for the zarr.Array class.

Indexing with coordinate arrays#

Items from a Zarr array can be extracted by providing an integer array of coordinates. E.g.:

>>> data = np.arange(10) ** 2
>>> z = zarr.create_array(store='data/example-10.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> z[:]
array([ 0,  1,  4,  9, 16, 25, 36, 49, 64, 81])
>>> z.get_coordinate_selection([2, 5])
array([ 4, 25])

Coordinate arrays can also be used to update data, e.g.:

>>> z.set_coordinate_selection([2, 5], [-1, -2])
>>> z[:]
array([ 0,  1, -1,  9, 16, -2, 36, 49, 64, 81])

For multidimensional arrays, coordinates must be provided for each dimension, e.g.:

>>> data = np.arange(15).reshape(3, 5)
>>> z = zarr.create_array(store='data/example-11.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> z[:]
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> z.get_coordinate_selection(([0, 2], [1, 3]))
array([ 1, 13])
>>> z.set_coordinate_selection(([0, 2], [1, 3]), [-1, -2])
>>> z[:]
array([[ 0, -1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, -2, 14]])

For convenience, coordinate indexing is also available via the vindex property, as well as the square bracket operator, e.g.:

>>> z.vindex[[0, 2], [1, 3]]
array([-1, -2])
>>> z.vindex[[0, 2], [1, 3]] = [-3, -4]
>>> z[:]
array([[ 0, -3,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, -4, 14]])
>>> z[[0, 2], [1, 3]]
array([-3, -4])

When the indexing arrays have different shapes, they are broadcast together. That is, the following two calls are equivalent:

>>> z[1, [1, 3]]
array([6, 8])
>>> z[[1, 1], [1, 3]]
array([6, 8])

Indexing with a mask array#

Items can also be extracted by providing a Boolean mask. E.g.:

>>> data = np.arange(10) ** 2
>>> z = zarr.create_array(store='data/example-12.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> z[:]
array([ 0,  1,  4,  9, 16, 25, 36, 49, 64, 81])
>>> sel = np.zeros_like(z, dtype=bool)
>>> sel[2] = True
>>> sel[5] = True
>>> z.get_mask_selection(sel)
array([ 4, 25])
>>> z.set_mask_selection(sel, [-1, -2])
>>> z[:]
array([ 0,  1, -1,  9, 16, -2, 36, 49, 64, 81])

Here’s a multidimensional example:

>>> data = np.arange(15).reshape(3, 5)
>>> z = zarr.create_array(store='data/example-13.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> z[:]
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> sel = np.zeros_like(z, dtype=bool)
>>> sel[0, 1] = True
>>> sel[2, 3] = True
>>> z.get_mask_selection(sel)
array([ 1, 13])
>>> z.set_mask_selection(sel, [-1, -2])
>>> z[:]
array([[ 0, -1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, -2, 14]])

For convenience, mask indexing is also available via the vindex property, e.g.:

>>> z.vindex[sel]
array([-1, -2])
>>> z.vindex[sel] = [-3, -4]
>>> z[:]
array([[ 0, -3,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, -4, 14]])

Mask indexing is conceptually the same as coordinate indexing, and is implemented internally via the same machinery. Both styles of indexing allow selecting arbitrary items from an array, also known as point selection.

Orthogonal indexing#

Zarr arrays also support methods for orthogonal indexing, which allows selections to be made along each dimension of an array independently. For example, this allows selecting a subset of rows and/or columns from a 2-dimensional array. E.g.:

>>> data = np.arange(15).reshape(3, 5)
>>> z = zarr.create_array(store='data/example-14.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> z[:]
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> z.get_orthogonal_selection(([0, 2], slice(None)))  # select first and third rows
array([[ 0,  1,  2,  3,  4],
       [10, 11, 12, 13, 14]])
>>> z.get_orthogonal_selection((slice(None), [1, 3]))  # select second and fourth columns
array([[ 1,  3],
       [ 6,  8],
       [11, 13]])
>>> z.get_orthogonal_selection(([0, 2], [1, 3]))  # select rows [0, 2] and columns [1, 4]
array([[ 1,  3],
       [11, 13]])

Data can also be modified, e.g.:

>>> z.set_orthogonal_selection(([0, 2], [1, 3]), [[-1, -2], [-3, -4]])

For convenience, the orthogonal indexing functionality is also available via the oindex property, e.g.:

>>> data = np.arange(15).reshape(3, 5)
>>> z = zarr.create_array(store='data/example-15.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> z.oindex[[0, 2], :]  # select first and third rows
array([[ 0,  1,  2,  3,  4],
       [10, 11, 12, 13, 14]])
>>> z.oindex[:, [1, 3]]  # select second and fourth columns
array([[ 1,  3],
       [ 6,  8],
       [11, 13]])
>>> z.oindex[[0, 2], [1, 3]]  # select rows [0, 2] and columns [1, 4]
array([[ 1,  3],
       [11, 13]])
>>> z.oindex[[0, 2], [1, 3]] = [[-1, -2], [-3, -4]]
>>> z[:]
array([[ 0, -1,  2, -2,  4],
       [ 5,  6,  7,  8,  9],
       [10, -3, 12, -4, 14]])

Any combination of integer, slice, 1D integer array and/or 1D Boolean array can be used for orthogonal indexing.

If the index contains at most one iterable, and otherwise contains only slices and integers, orthogonal indexing is also available directly on the array:

>>> data = np.arange(15).reshape(3, 5)
>>> z = zarr.create_array(store='data/example-16.zarr', shape=data.shape, dtype=data.dtype)
>>> z[:] = data
>>> np.all(z.oindex[[0, 2], :] == z[[0, 2], :])
np.True_

Block Indexing#

Zarr also support block indexing, which allows selections of whole chunks based on their logical indices along each dimension of an array. For example, this allows selecting a subset of chunk aligned rows and/or columns from a 2-dimensional array. E.g.:

>>> data = np.arange(100).reshape(10, 10)
>>> z = zarr.create_array(store='data/example-17.zarr', shape=data.shape, dtype=data.dtype, chunks=(3, 3))
>>> z[:] = data

Retrieve items by specifying their block coordinates:

>>> z.get_block_selection(1)
array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
       [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])

Equivalent slicing:

>>> z[3:6]
array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
       [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])

For convenience, the block selection functionality is also available via the blocks property, e.g.:

>>> z.blocks[1]
array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
       [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])

Block index arrays may be multidimensional to index multidimensional arrays. For example:

>>> z.blocks[0, 1:3]
array([[ 3,  4,  5,  6,  7,  8],
       [13, 14, 15, 16, 17, 18],
       [23, 24, 25, 26, 27, 28]])

Data can also be modified. Let’s start by a simple 2D array:

>>> z = zarr.create_array(store='data/example-18.zarr', shape=(6, 6), dtype=int, chunks=(2, 2))

Set data for a selection of items:

>>> z.set_block_selection((1, 0), 1)
>>> z[...]
array([[0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [1, 1, 0, 0, 0, 0],
       [1, 1, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0]])

For convenience, this functionality is also available via the blocks property. E.g.:

>>> z.blocks[:, 2] = 7
>>> z[...]
array([[0, 0, 0, 0, 7, 7],
       [0, 0, 0, 0, 7, 7],
       [1, 1, 0, 0, 7, 7],
       [1, 1, 0, 0, 7, 7],
       [0, 0, 0, 0, 7, 7],
       [0, 0, 0, 0, 7, 7]])

Any combination of integer and slice can be used for block indexing:

>>> z.blocks[2, 1:3]
array([[0, 0, 7, 7],
       [0, 0, 7, 7]])
>>>
>>> root = zarr.create_group('data/example-19.zarr')
>>> foo = root.create_array(name='foo', shape=(1000, 100), chunks=(10, 10), dtype='float32')
>>> bar = root.create_array(name='foo/bar', shape=(100,), dtype='int32')
>>> foo[:, :] = np.random.random((1000, 100))
>>> bar[:] = np.arange(100)
>>> root.tree()
/
└── foo (1000, 100) float32

Sharding#

Using small chunk shapes in very large arrays can lead to a very large number of chunks. This can become a performance issue for file systems and object storage. With Zarr format 3, a new sharding feature has been added to address this issue.

With sharding, multiple chunks can be stored in a single storage object (e.g. a file). Within a shard, chunks are compressed and serialized separately. This allows individual chunks to be read independently. However, when writing data, a full shard must be written in one go for optimal performance and to avoid concurrency issues. That means that shards are the units of writing and chunks are the units of reading. Users need to configure the chunk and shard shapes accordingly.

Sharded arrays can be created by providing the shards parameter to zarr.create_array().

>>> a = zarr.create_array('data/example-20.zarr', shape=(10000, 10000), shards=(1000, 1000), chunks=(100, 100), dtype='uint8')
>>> a[:] = (np.arange(10000 * 10000) % 256).astype('uint8').reshape(10000, 10000)
>>> a.info_complete()
Type               : Array
Zarr format        : 3
Data type          : DataType.uint8
Shape              : (10000, 10000)
Shard shape        : (1000, 1000)
Chunk shape        : (100, 100)
Order              : C
Read-only          : False
Store type         : LocalStore
Filters            : ()
Serializer         : BytesCodec(endian=<Endian.little: 'little'>)
Compressors        : (ZstdCodec(level=0, checksum=False),)
No. bytes          : 100000000 (95.4M)
No. bytes stored   : 3981552
Storage ratio      : 25.1
Shards Initialized : 100

In this example a shard shape of (1000, 1000) and a chunk shape of (100, 100) is used. This means that 10*10 chunks are stored in each shard, and there are 10*10 shards in total. Without the shards argument, there would be 10,000 chunks stored as individual files.

Missing features in 3.0#

The following features have not been ported to 3.0 yet.

Object arrays#

See the Zarr-Python 2 documentation on Object arrays for more details.

Fixed-length string arrays#

See the Zarr-Python 2 documentation on Fixed-length string arrays for more details.

Datetime and Timedelta arrays#

See the Zarr-Python 2 documentation on Datetime and Timedelta for more details.

Copying and migrating data#

See the Zarr-Python 2 documentation on Copying and migrating data for more details.