Quickstart#
Welcome to the Zarr-Python Quickstart guide! This page will help you get up and running with the Zarr library in Python to efficiently manage and analyze multi-dimensional arrays.
Zarr is a powerful library for storage of n-dimensional arrays, supporting chunking, compression, and various backends, making it a versatile choice for scientific and large-scale data.
Installation#
Zarr requires Python 3.11 or higher. You can install it via pip:
pip install zarr
or conda:
conda install --channel conda-forge zarr
Creating an Array#
To get started, you can create a simple Zarr array:
>>> import zarr
>>> import numpy as np
>>>
>>> # Create a 2D Zarr array
>>> z = zarr.create_array(
... store="data/example-1.zarr",
... shape=(100, 100),
... chunks=(10, 10),
... dtype="f4"
... )
>>>
>>> # Assign data to the array
>>> z[:, :] = np.random.random((100, 100))
>>> z.info
Type : Array
Zarr format : 3
Data type : DataType.float32
Shape : (100, 100)
Chunk shape : (10, 10)
Order : C
Read-only : False
Store type : LocalStore
Codecs : [{'endian': <Endian.little: 'little'>}, {'level': 0, 'checksum': False}]
No. bytes : 40000 (39.1K)
Here, we created a 2D array of shape (100, 100)
, chunked into blocks of
(10, 10)
, and filled it with random floating-point data. This array was
written to a LocalStore
in the data/example-1.zarr
directory.
Compression and Filters#
Zarr supports data compression and filters. For example, to use Blosc compression:
>>> z = zarr.create_array(
... "data/example-3.zarr",
... mode="w", shape=(100, 100),
... chunks=(10, 10), dtype="f4",
... compressors=zarr.codecs.BloscCodec(cname="zstd", clevel=3, shuffle=zarr.codecs.BloscShuffle.shuffle)
... )
>>> z[:, :] = np.random.random((100, 100))
>>>
>>> z.info
Type : Array
Zarr format : 3
Data type : DataType.float32
Shape : (100, 100)
Chunk shape : (10, 10)
Order : C
Read-only : False
Store type : LocalStore
Codecs : [{'endian': <Endian.little: 'little'>}, {'level': 0, 'checksum': False}]
No. bytes : 40000 (39.1K)
This compresses the data using the Zstandard codec with shuffle enabled for better compression.
Hierarchical Groups#
Zarr allows you to create hierarchical groups, similar to directories:
>>> # Create nested groups and add arrays
>>> root = zarr.group("data/example-2.zarr")
>>> foo = root.create_group(name="foo")
>>> bar = root.create_array(
... name="bar", shape=(100, 10), chunks=(10, 10), dtype="f4"
... )
>>> spam = foo.create_array(name="spam", shape=(10,), dtype="i4")
>>>
>>> # Assign values
>>> bar[:, :] = np.random.random((100, 10))
>>> spam[:] = np.arange(10)
>>>
>>> # print the hierarchy
>>> root.tree()
/
├── bar (100, 10) float32
└── foo
└── spam (10,) int32
This creates a group with two datasets: foo
and bar
.
Persistent Storage#
Zarr supports persistent storage to disk or cloud-compatible backends. While examples above
utilized a zarr.storage.LocalStore
, a number of other storage options are available.
Zarr integrates seamlessly with cloud object storage such as Amazon S3 and Google Cloud Storage using external libraries like s3fs or gcsfs:
>>> import s3fs
>>>
>>> z = zarr.create_array("s3://example-bucket/foo", mode="w", shape=(100, 100), chunks=(10, 10), dtype="f4")
>>> z[:, :] = np.random.random((100, 100))
A single-file store can also be created using the the zarr.storage.ZipStore
:
>>> # Store the array in a ZIP file
>>> store = zarr.storage.ZipStore("data/example-3.zip", mode='w')
>>>
>>> z = zarr.create_array(
... store=store,
... mode="w",
... shape=(100, 100),
... chunks=(10, 10),
... dtype="f4"
... )
>>>
>>> # write to the array
>>> z[:, :] = np.random.random((100, 100))
>>>
>>> # the ZipStore must be explicitly closed
>>> store.close()
To open an existing array from a ZIP file:
>>> # Open the ZipStore in read-only mode
>>> store = zarr.storage.ZipStore("data/example-3.zip", read_only=True)
>>>
>>> z = zarr.open_array(store, mode='r')
>>>
>>> # read the data as a NumPy Array
>>> z[:]
array([[0.66734236, 0.15667458, 0.98720884, ..., 0.36229587, 0.67443246,
0.34315267],
[0.65787303, 0.9544212 , 0.4830079 , ..., 0.33097172, 0.60423803,
0.45621237],
[0.27632037, 0.9947008 , 0.42434934, ..., 0.94860053, 0.6226942 ,
0.6386924 ],
...,
[0.12854576, 0.934397 , 0.19524333, ..., 0.11838563, 0.4967675 ,
0.43074256],
[0.82029045, 0.4671437 , 0.8090906 , ..., 0.7814118 , 0.42650765,
0.95929915],
[0.4335856 , 0.7565437 , 0.7828931 , ..., 0.48119593, 0.66220033,
0.6652362 ]], shape=(100, 100), dtype=float32)
Read more about Zarr’s storage options in the User Guide.
Next Steps#
Now that you’re familiar with the basics, explore the following resources: