zarr#
Submodules#
Attributes#
Classes#
Instantiate an array from an initialized store. |
|
An asynchronous array class representing a chunked array stored in a Zarr store. |
|
Asynchronous Group object. |
|
Functions#
|
Create an array filled with data. |
|
Consolidate the metadata of all nodes in a hierarchy. |
|
|
|
|
|
|
|
Create an array. |
|
Create an array. |
|
Create a group. |
|
Create an empty array. |
|
Create an empty array like another array. |
|
Create an array with a default fill value. |
|
Create a filled array like another array. |
|
Create a group. |
|
Load data from an array or group into memory. |
|
Create an array with a fill value of one. |
|
Create an array of ones like another array. |
|
Open a group or array using file-mode-like semantics. |
|
Open an array using file-mode-like semantics. |
|
Alias for |
|
Open a group using file-mode-like semantics. |
|
Open a persistent array like another array. |
|
Save an array or group of arrays to the local file system. |
|
Save a NumPy array to the local file system. |
|
Save several NumPy arrays to the local file system. |
|
Provide a rich display of the hierarchy. |
|
Create an array with a fill value of zero. |
|
Create an array of zeros like another array. |
Package Contents#
- class zarr.Array[source]#
Instantiate an array from an initialized store.
- append(
- data: numpy.typing.ArrayLike,
- axis: int = 0,
Append data to axis.
- Parameters:
- dataarray-like
Data to be appended.
- axisint
Axis along which to append.
- Returns:
- new_shapetuple
Notes
The size of all dimensions other than axis must match between this array and data.
Examples
>>> import numpy as np >>> import zarr >>> a = np.arange(10000000, dtype='i4').reshape(10000, 1000) >>> z = zarr.array(a, chunks=(1000, 100)) >>> z.shape (10000, 1000) >>> z.append(a) (20000, 1000) >>> z.append(np.vstack([a, a]), axis=1) (20000, 2000) >>> z.shape (20000, 2000)
- classmethod create(
- store: zarr.storage.StoreLike,
- *,
- shape: zarr.core.common.ChunkCoords,
- dtype: numpy.typing.DTypeLike,
- zarr_format: zarr.core.common.ZarrFormat = 3,
- fill_value: Any | None = None,
- attributes: dict[str, zarr.core.common.JSON] | None = None,
- chunk_shape: zarr.core.common.ChunkCoords | None = None,
- chunk_key_encoding: zarr.core.chunk_key_encodings.ChunkKeyEncoding | tuple[Literal['default'], Literal['.', '/']] | tuple[Literal['v2'], Literal['.', '/']] | None = None,
- codecs: collections.abc.Iterable[zarr.abc.codec.Codec | dict[str, zarr.core.common.JSON]] | None = None,
- dimension_names: collections.abc.Iterable[str] | None = None,
- chunks: zarr.core.common.ChunkCoords | None = None,
- dimension_separator: Literal['.', '/'] | None = None,
- order: zarr.core.common.MemoryOrder | None = None,
- filters: list[dict[str, zarr.core.common.JSON]] | None = None,
- compressor: dict[str, zarr.core.common.JSON] | None = None,
- overwrite: bool = False,
- config: zarr.core.array_spec.ArrayConfig | zarr.core.array_spec.ArrayConfigLike | None = None,
Creates a new Array instance from an initialized store.
Deprecated since version 3.0.0: Deprecated in favor of
zarr.create_array()
.- Parameters:
- storeStoreLike
The array store that has already been initialized.
- shapeChunkCoords
The shape of the array.
- dtypenpt.DTypeLike
The data type of the array.
- chunk_shapeChunkCoords, optional
The shape of the Array’s chunks. Zarr format 3 only. Zarr format 2 arrays should use chunks instead. If not specified, default are guessed based on the shape and dtype.
- chunk_key_encodingChunkKeyEncoding, optional
A specification of how the chunk keys are represented in storage. Zarr format 3 only. Zarr format 2 arrays should use dimension_separator instead. Default is
("default", "/")
.- codecsSequence of Codecs or dicts, optional
An iterable of Codec or dict serializations of Codecs. The elements of this collection specify the transformation from array values to stored bytes. Zarr format 3 only. Zarr format 2 arrays should use
filters
andcompressor
instead.If no codecs are provided, default codecs will be used:
For numeric arrays, the default is
BytesCodec
andZstdCodec
.For Unicode strings, the default is
VLenUTF8Codec
andZstdCodec
.For bytes or objects, the default is
VLenBytesCodec
andZstdCodec
.
These defaults can be changed by modifying the value of
array.v3_default_filters
,array.v3_default_serializer
andarray.v3_default_compressors
inzarr.core.config
.- dimension_namesIterable[str], optional
The names of the dimensions (default is None). Zarr format 3 only. Zarr format 2 arrays should not use this parameter.
- chunksChunkCoords, optional
The shape of the array’s chunks. Zarr format 2 only. Zarr format 3 arrays should use
chunk_shape
instead. If not specified, default are guessed based on the shape and dtype.- dimension_separatorLiteral[“.”, “/”], optional
The dimension separator (default is “.”). Zarr format 2 only. Zarr format 3 arrays should use
chunk_key_encoding
instead.- orderLiteral[“C”, “F”], optional
The memory of the array (default is “C”). If
zarr_format
is 2, this parameter sets the memory order of the array. If zarr_format` is 3, then this parameter is deprecated, because memory order is a runtime parameter for Zarr 3 arrays. The recommended way to specify the memory order for Zarr 3 arrays is via theconfig
parameter, e.g.{'order': 'C'}
.- filterslist[dict[str, JSON]], optional
Sequence of filters to use to encode chunk data prior to compression. Zarr format 2 only. Zarr format 3 arrays should use
codecs
instead. If nofilters
are provided, a default set of filters will be used. These defaults can be changed by modifying the value ofarray.v2_default_filters
inzarr.core.config
.- compressordict[str, JSON], optional
Primary compressor to compress chunk data. Zarr format 2 only. Zarr format 3 arrays should use
codecs
instead.If no
compressor
is provided, a default compressor will be used:For numeric arrays, the default is
ZstdCodec
.For Unicode strings, the default is
VLenUTF8Codec
.For bytes or objects, the default is
VLenBytesCodec
.
These defaults can be changed by modifying the value of
array.v2_default_compressor
inzarr.core.config
.- overwritebool, optional
Whether to raise an error if the store already exists (default is False).
- Returns:
- Array
Array created from the store.
- classmethod from_dict( ) Array [source]#
Create a Zarr array from a dictionary.
- Parameters:
- store_pathStorePath
The path within the store where the array should be created.
- datadict
A dictionary representing the array data. This dictionary should include necessary metadata for the array, such as shape, dtype, fill value, and attributes.
- Returns:
- Array
The created Zarr array.
- Raises:
- ValueError
If the dictionary data is invalid or missing required fields for array creation.
- get_basic_selection(
- selection: zarr.core.indexing.BasicSelection = Ellipsis,
- *,
- out: zarr.core.buffer.NDBuffer | None = None,
- prototype: zarr.core.buffer.BufferPrototype | None = None,
- fields: zarr.core.indexing.Fields | None = None,
Retrieve data for an item or region of the array.
- Parameters:
- selectiontuple
A tuple specifying the requested item or region for each dimension of the array. May be any combination of int and/or slice or ellipsis for multidimensional arrays.
- outNDBuffer, optional
If given, load the selected data directly into this buffer.
- prototypeBufferPrototype, optional
The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.
- fieldsstr or sequence of str, optional
For arrays with a structured dtype, one or more fields can be specified to extract data for.
- Returns:
- NDArrayLike
An array-like containing the data for the requested region.
See also
Notes
Slices with step > 1 are supported, but slices with negative step are not.
For arrays with a structured dtype, see Zarr format 2 for examples of how to use the fields parameter.
This method provides the implementation for accessing data via the square bracket notation (__getitem__). See
__getitem__()
for examples using the alternative notation.Examples
Setup a 1-dimensional array:
>>> import zarr >>> import numpy as np >>> data = np.arange(100, dtype="uint16") >>> z = zarr.create_array( >>> StorePath(MemoryStore(mode="w")), >>> shape=data.shape, >>> chunks=(3,), >>> dtype=data.dtype, >>> ) >>> z[:] = data
Retrieve a single item:
>>> z.get_basic_selection(5) 5
Retrieve a region via slicing:
>>> z.get_basic_selection(slice(5)) array([0, 1, 2, 3, 4]) >>> z.get_basic_selection(slice(-5, None)) array([95, 96, 97, 98, 99]) >>> z.get_basic_selection(slice(5, 10)) array([5, 6, 7, 8, 9]) >>> z.get_basic_selection(slice(5, 10, 2)) array([5, 7, 9]) >>> z.get_basic_selection(slice(None, None, 2)) array([ 0, 2, 4, ..., 94, 96, 98])
Setup a 3-dimensional array:
>>> data = np.arange(1000).reshape(10, 10, 10) >>> z = zarr.create_array( >>> StorePath(MemoryStore(mode="w")), >>> shape=data.shape, >>> chunks=(5, 5, 5), >>> dtype=data.dtype, >>> ) >>> z[:] = data
Retrieve an item:
>>> z.get_basic_selection((1, 2, 3)) 123
Retrieve a region via slicing and Ellipsis:
>>> z.get_basic_selection((slice(1, 3), slice(1, 3), 0)) array([[110, 120], [210, 220]]) >>> z.get_basic_selection(0, (slice(1, 3), slice(None))) array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]]) >>> z.get_basic_selection((..., 5)) array([[ 2 12 22 32 42 52 62 72 82 92] [102 112 122 132 142 152 162 172 182 192] ... [802 812 822 832 842 852 862 872 882 892] [902 912 922 932 942 952 962 972 982 992]]
- get_block_selection(
- selection: zarr.core.indexing.BasicSelection,
- *,
- out: zarr.core.buffer.NDBuffer | None = None,
- fields: zarr.core.indexing.Fields | None = None,
- prototype: zarr.core.buffer.BufferPrototype | None = None,
Retrieve a selection of individual items, by providing the indices (coordinates) for each selected item.
- Parameters:
- selectionint or slice or tuple of int or slice
An integer (coordinate) or slice for each dimension of the array.
- outNDBuffer, optional
If given, load the selected data directly into this buffer.
- fieldsstr or sequence of str, optional
For arrays with a structured dtype, one or more fields can be specified to extract data for.
- prototypeBufferPrototype, optional
The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.
- Returns:
- NDArrayLike
An array-like containing the data for the requested block selection.
See also
Notes
Block indexing is a convenience indexing method to work on individual chunks with chunk index slicing. It has the same concept as Dask’s Array.blocks indexing.
Slices are supported. However, only with a step size of one.
Block index arrays may be multidimensional to index multidimensional arrays. For example:
>>> z.blocks[0, 1:3] array([[ 3, 4, 5, 6, 7, 8], [13, 14, 15, 16, 17, 18], [23, 24, 25, 26, 27, 28]])
Examples
Setup a 2-dimensional array:
>>> import zarr >>> import numpy as np >>> data = np.arange(0, 100, dtype="uint16").reshape((10, 10)) >>> z = zarr.create_array( >>> StorePath(MemoryStore(mode="w")), >>> shape=data.shape, >>> chunks=(3, 3), >>> dtype=data.dtype, >>> ) >>> z[:] = data
Retrieve items by specifying their block coordinates:
>>> z.get_block_selection((1, slice(None))) array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49], [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])
Which is equivalent to:
>>> z[3:6, :] array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49], [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])
For convenience, the block selection functionality is also available via the blocks property, e.g.:
>>> z.blocks[1] array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49], [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])
- get_coordinate_selection(
- selection: zarr.core.indexing.CoordinateSelection,
- *,
- out: zarr.core.buffer.NDBuffer | None = None,
- fields: zarr.core.indexing.Fields | None = None,
- prototype: zarr.core.buffer.BufferPrototype | None = None,
Retrieve a selection of individual items, by providing the indices (coordinates) for each selected item.
- Parameters:
- selectiontuple
An integer (coordinate) array for each dimension of the array.
- outNDBuffer, optional
If given, load the selected data directly into this buffer.
- fieldsstr or sequence of str, optional
For arrays with a structured dtype, one or more fields can be specified to extract data for.
- prototypeBufferPrototype, optional
The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.
- Returns:
- NDArrayLike
An array-like containing the data for the requested coordinate selection.
See also
Notes
Coordinate indexing is also known as point selection, and is a form of vectorized or inner indexing.
Slices are not supported. Coordinate arrays must be provided for all dimensions of the array.
Coordinate arrays may be multidimensional, in which case the output array will also be multidimensional. Coordinate arrays are broadcast against each other before being applied. The shape of the output will be the same as the shape of each coordinate array after broadcasting.
Examples
Setup a 2-dimensional array:
>>> import zarr >>> import numpy as np >>> data = np.arange(0, 100, dtype="uint16").reshape((10, 10)) >>> z = zarr.create_array( >>> StorePath(MemoryStore(mode="w")), >>> shape=data.shape, >>> chunks=(3, 3), >>> dtype=data.dtype, >>> ) >>> z[:] = data
Retrieve items by specifying their coordinates:
>>> z.get_coordinate_selection(([1, 4], [1, 4])) array([11, 44])
For convenience, the coordinate selection functionality is also available via the vindex property, e.g.:
>>> z.vindex[[1, 4], [1, 4]] array([11, 44])
- get_mask_selection(
- mask: zarr.core.indexing.MaskSelection,
- *,
- out: zarr.core.buffer.NDBuffer | None = None,
- fields: zarr.core.indexing.Fields | None = None,
- prototype: zarr.core.buffer.BufferPrototype | None = None,
Retrieve a selection of individual items, by providing a Boolean array of the same shape as the array against which the selection is being made, where True values indicate a selected item.
- Parameters:
- maskndarray, bool
A Boolean array of the same shape as the array against which the selection is being made.
- outNDBuffer, optional
If given, load the selected data directly into this buffer.
- fieldsstr or sequence of str, optional
For arrays with a structured dtype, one or more fields can be specified to extract data for.
- prototypeBufferPrototype, optional
The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.
- Returns:
- NDArrayLike
An array-like containing the data for the requested selection.
See also
Notes
Mask indexing is a form of vectorized or inner indexing, and is equivalent to coordinate indexing. Internally the mask array is converted to coordinate arrays by calling np.nonzero.
Examples
Setup a 2-dimensional array:
>>> import zarr >>> import numpy as np >>> data = np.arange(100).reshape(10, 10) >>> z = zarr.create_array( >>> StorePath(MemoryStore(mode="w")), >>> shape=data.shape, >>> chunks=data.shape, >>> dtype=data.dtype, >>> ) >>> z[:] = data
Retrieve items by specifying a mask:
>>> sel = np.zeros_like(z, dtype=bool) >>> sel[1, 1] = True >>> sel[4, 4] = True >>> z.get_mask_selection(sel) array([11, 44])
For convenience, the mask selection functionality is also available via the vindex property, e.g.:
>>> z.vindex[sel] array([11, 44])
- get_orthogonal_selection(
- selection: zarr.core.indexing.OrthogonalSelection,
- *,
- out: zarr.core.buffer.NDBuffer | None = None,
- fields: zarr.core.indexing.Fields | None = None,
- prototype: zarr.core.buffer.BufferPrototype | None = None,
Retrieve data by making a selection for each dimension of the array. For example, if an array has 2 dimensions, allows selecting specific rows and/or columns. The selection for each dimension can be either an integer (indexing a single item), a slice, an array of integers, or a Boolean array where True values indicate a selection.
- Parameters:
- selectiontuple
A selection for each dimension of the array. May be any combination of int, slice, integer array or Boolean array.
- outNDBuffer, optional
If given, load the selected data directly into this buffer.
- fieldsstr or sequence of str, optional
For arrays with a structured dtype, one or more fields can be specified to extract data for.
- prototypeBufferPrototype, optional
The prototype of the buffer to use for the output data. If not provided, the default buffer prototype is used.
- Returns:
- NDArrayLike
An array-like containing the data for the requested selection.
See also
Notes
Orthogonal indexing is also known as outer indexing.
Slices with step > 1 are supported, but slices with negative step are not.
Examples
Setup a 2-dimensional array:
>>> import zarr >>> import numpy as np >>> data = np.arange(100).reshape(10, 10) >>> z = zarr.create_array( >>> StorePath(MemoryStore(mode="w")), >>> shape=data.shape, >>> chunks=data.shape, >>> dtype=data.dtype, >>> ) >>> z[:] = data
Retrieve rows and columns via any combination of int, slice, integer array and/or Boolean array:
>>> z.get_orthogonal_selection(([1, 4], slice(None))) array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]]) >>> z.get_orthogonal_selection((slice(None), [1, 4])) array([[ 1, 4], [11, 14], [21, 24], [31, 34], [41, 44], [51, 54], [61, 64], [71, 74], [81, 84], [91, 94]]) >>> z.get_orthogonal_selection(([1, 4], [1, 4])) array([[11, 14], [41, 44]]) >>> sel = np.zeros(z.shape[0], dtype=bool) >>> sel[1] = True >>> sel[4] = True >>> z.get_orthogonal_selection((sel, sel)) array([[11, 14], [41, 44]])
For convenience, the orthogonal selection functionality is also available via the oindex property, e.g.:
>>> z.oindex[[1, 4], :] array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]]) >>> z.oindex[:, [1, 4]] array([[ 1, 4], [11, 14], [21, 24], [31, 34], [41, 44], [51, 54], [61, 64], [71, 74], [81, 84], [91, 94]]) >>> z.oindex[[1, 4], [1, 4]] array([[11, 14], [41, 44]]) >>> sel = np.zeros(z.shape[0], dtype=bool) >>> sel[1] = True >>> sel[4] = True >>> z.oindex[sel, sel] array([[11, 14], [41, 44]])
- info_complete() Any [source]#
Returns all the information about an array, including information from the Store.
In addition to the statically known information like
name
andzarr_format
, this includes additional information like the size of the array in bytes and the number of chunks written.Note that this method will need to read metadata from the store.
- Returns:
- ArrayInfo
See also
Array.info
The statically known subset of metadata about an array.
- nbytes_stored() int [source]#
Determine the size, in bytes, of the array actually written to the store.
- Returns:
- sizeint
- classmethod open(store: zarr.storage.StoreLike) Array [source]#
Opens an existing Array from a store.
- Parameters:
- storeStore
Store containing the Array.
- Returns:
- Array
Array opened from the store.
- resize(new_shape: zarr.core.common.ShapeLike) None [source]#
Change the shape of the array by growing or shrinking one or more dimensions.
- Parameters:
- new_shapetuple
New shape of the array.
Notes
If one or more dimensions are shrunk, any chunks falling outside the new array shape will be deleted from the underlying store. However, it is noteworthy that the chunks partially falling inside the new array (i.e. boundary chunks) will remain intact, and therefore, the data falling outside the new array but inside the boundary chunks would be restored by a subsequent resize operation that grows the array size.
Examples
>>> import zarr >>> z = zarr.zeros(shape=(10000, 10000), >>> chunk_shape=(1000, 1000), >>> dtype="i4",) >>> z.shape (10000, 10000) >>> z = z.resize(20000, 1000) >>> z.shape (20000, 1000) >>> z2 = z.resize(50, 50) >>> z.shape (20000, 1000) >>> z2.shape (50, 50)
- set_basic_selection(
- selection: zarr.core.indexing.BasicSelection,
- value: numpy.typing.ArrayLike,
- *,
- fields: zarr.core.indexing.Fields | None = None,
- prototype: zarr.core.buffer.BufferPrototype | None = None,
Modify data for an item or region of the array.
- Parameters:
- selectiontuple
A tuple specifying the requested item or region for each dimension of the array. May be any combination of int and/or slice or ellipsis for multidimensional arrays.
- valuenpt.ArrayLike
An array-like containing values to be stored into the array.
- fieldsstr or sequence of str, optional
For arrays with a structured dtype, one or more fields can be specified to set data for.
- prototypeBufferPrototype, optional
The prototype of the buffer used for setting the data. If not provided, the default buffer prototype is used.
See also
Notes
For arrays with a structured dtype, see Zarr format 2 for examples of how to use the fields parameter.
This method provides the underlying implementation for modifying data via square bracket notation, see
__setitem__()
for equivalent examples using the alternative notation.Examples
Setup a 1-dimensional array:
>>> import zarr >>> z = zarr.zeros( >>> shape=(100,), >>> store=StorePath(MemoryStore(mode="w")), >>> chunk_shape=(100,), >>> dtype="i4", >>> )
Set all array elements to the same scalar value:
>>> z.set_basic_selection(..., 42) >>> z[...] array([42, 42, 42, ..., 42, 42, 42])
Set a portion of the array:
>>> z.set_basic_selection(slice(10), np.arange(10)) >>> z.set_basic_selection(slice(-10, None), np.arange(10)[::-1]) >>> z[...] array([ 0, 1, 2, ..., 2, 1, 0])
Setup a 2-dimensional array:
>>> z = zarr.zeros( >>> shape=(5, 5), >>> store=StorePath(MemoryStore(mode="w")), >>> chunk_shape=(5, 5), >>> dtype="i4", >>> )
Set all array elements to the same scalar value:
>>> z.set_basic_selection(..., 42)
Set a portion of the array:
>>> z.set_basic_selection((0, slice(None)), np.arange(z.shape[1])) >>> z.set_basic_selection((slice(None), 0), np.arange(z.shape[0])) >>> z[...] array([[ 0, 1, 2, 3, 4], [ 1, 42, 42, 42, 42], [ 2, 42, 42, 42, 42], [ 3, 42, 42, 42, 42], [ 4, 42, 42, 42, 42]])
- set_block_selection(
- selection: zarr.core.indexing.BasicSelection,
- value: numpy.typing.ArrayLike,
- *,
- fields: zarr.core.indexing.Fields | None = None,
- prototype: zarr.core.buffer.BufferPrototype | None = None,
Modify a selection of individual blocks, by providing the chunk indices (coordinates) for each block to be modified.
- Parameters:
- selectiontuple
An integer (coordinate) or slice for each dimension of the array.
- valuenpt.ArrayLike
An array-like containing the data to be stored in the block selection.
- fieldsstr or sequence of str, optional
For arrays with a structured dtype, one or more fields can be specified to set data for.
- prototypeBufferPrototype, optional
The prototype of the buffer used for setting the data. If not provided, the default buffer prototype is used.
See also
Notes
Block indexing is a convenience indexing method to work on individual chunks with chunk index slicing. It has the same concept as Dask’s Array.blocks indexing.
Slices are supported. However, only with a step size of one.
Examples
Set up a 2-dimensional array:
>>> import zarr >>> z = zarr.zeros( >>> shape=(6, 6), >>> store=StorePath(MemoryStore(mode="w")), >>> chunk_shape=(2, 2), >>> dtype="i4", >>> )
Set data for a selection of items:
>>> z.set_block_selection((1, 0), 1) >>> z[...] array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]])
For convenience, this functionality is also available via the blocks property. E.g.:
>>> z.blocks[2, 1] = 4 >>> z[...] array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 4, 4, 0, 0], [0, 0, 4, 4, 0, 0]]) >>> z.blocks[:, 2] = 7 >>> z[...] array([[0, 0, 0, 0, 7, 7], [0, 0, 0, 0, 7, 7], [1, 1, 0, 0, 7, 7], [1, 1, 0, 0, 7, 7], [0, 0, 4, 4, 7, 7], [0, 0, 4, 4, 7, 7]])
- set_coordinate_selection(
- selection: zarr.core.indexing.CoordinateSelection,
- value: numpy.typing.ArrayLike,
- *,
- fields: zarr.core.indexing.Fields | None = None,
- prototype: zarr.core.buffer.BufferPrototype | None = None,
Modify a selection of individual items, by providing the indices (coordinates) for each item to be modified.
- Parameters:
- selectiontuple
An integer (coordinate) array for each dimension of the array.
- valuenpt.ArrayLike
An array-like containing values to be stored into the array.
- fieldsstr or sequence of str, optional
For arrays with a structured dtype, one or more fields can be specified to set data for.
See also
Notes
Coordinate indexing is also known as point selection, and is a form of vectorized or inner indexing.
Slices are not supported. Coordinate arrays must be provided for all dimensions of the array.
Examples
Setup a 2-dimensional array:
>>> import zarr >>> z = zarr.zeros( >>> shape=(5, 5), >>> store=StorePath(MemoryStore(mode="w")), >>> chunk_shape=(5, 5), >>> dtype="i4", >>> )
Set data for a selection of items:
>>> z.set_coordinate_selection(([1, 4], [1, 4]), 1) >>> z[...] array([[0, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 1]])
For convenience, this functionality is also available via the vindex property. E.g.:
>>> z.vindex[[1, 4], [1, 4]] = 2 >>> z[...] array([[0, 0, 0, 0, 0], [0, 2, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 2]])
- set_mask_selection(
- mask: zarr.core.indexing.MaskSelection,
- value: numpy.typing.ArrayLike,
- *,
- fields: zarr.core.indexing.Fields | None = None,
- prototype: zarr.core.buffer.BufferPrototype | None = None,
Modify a selection of individual items, by providing a Boolean array of the same shape as the array against which the selection is being made, where True values indicate a selected item.
- Parameters:
- maskndarray, bool
A Boolean array of the same shape as the array against which the selection is being made.
- valuenpt.ArrayLike
An array-like containing values to be stored into the array.
- fieldsstr or sequence of str, optional
For arrays with a structured dtype, one or more fields can be specified to set data for.
See also
Notes
Mask indexing is a form of vectorized or inner indexing, and is equivalent to coordinate indexing. Internally the mask array is converted to coordinate arrays by calling np.nonzero.
Examples
Setup a 2-dimensional array:
>>> import zarr >>> z = zarr.zeros( >>> shape=(5, 5), >>> store=StorePath(MemoryStore(mode="w")), >>> chunk_shape=(5, 5), >>> dtype="i4", >>> )
Set data for a selection of items:
>>> sel = np.zeros_like(z, dtype=bool) >>> sel[1, 1] = True >>> sel[4, 4] = True >>> z.set_mask_selection(sel, 1) >>> z[...] array([[0, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 1]])
For convenience, this functionality is also available via the vindex property. E.g.:
>>> z.vindex[sel] = 2 >>> z[...] array([[0, 0, 0, 0, 0], [0, 2, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 2]])
- set_orthogonal_selection(
- selection: zarr.core.indexing.OrthogonalSelection,
- value: numpy.typing.ArrayLike,
- *,
- fields: zarr.core.indexing.Fields | None = None,
- prototype: zarr.core.buffer.BufferPrototype | None = None,
Modify data via a selection for each dimension of the array.
- Parameters:
- selectiontuple
A selection for each dimension of the array. May be any combination of int, slice, integer array or Boolean array.
- valuenpt.ArrayLike
An array-like array containing the data to be stored in the array.
- fieldsstr or sequence of str, optional
For arrays with a structured dtype, one or more fields can be specified to set data for.
- prototypeBufferPrototype, optional
The prototype of the buffer used for setting the data. If not provided, the default buffer prototype is used.
See also
Notes
Orthogonal indexing is also known as outer indexing.
Slices with step > 1 are supported, but slices with negative step are not.
Examples
Setup a 2-dimensional array:
>>> import zarr >>> z = zarr.zeros( >>> shape=(5, 5), >>> store=StorePath(MemoryStore(mode="w")), >>> chunk_shape=(5, 5), >>> dtype="i4", >>> )
Set data for a selection of rows:
>>> z.set_orthogonal_selection(([1, 4], slice(None)), 1) >>> z[...] array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1]])
Set data for a selection of columns:
>>> z.set_orthogonal_selection((slice(None), [1, 4]), 2) >>> z[...] array([[0, 2, 0, 0, 2], [1, 2, 1, 1, 2], [0, 2, 0, 0, 2], [0, 2, 0, 0, 2], [1, 2, 1, 1, 2]])
Set data for a selection of rows and columns:
>>> z.set_orthogonal_selection(([1, 4], [1, 4]), 3) >>> z[...] array([[0, 2, 0, 0, 2], [1, 3, 1, 1, 3], [0, 2, 0, 0, 2], [0, 2, 0, 0, 2], [1, 3, 1, 1, 3]])
Set data from a 2D array:
>>> values = np.arange(10).reshape(2, 5) >>> z.set_orthogonal_selection(([0, 3], ...), values) >>> z[...] array([[0, 1, 2, 3, 4], [1, 3, 1, 1, 3], [0, 2, 0, 0, 2], [5, 6, 7, 8, 9], [1, 3, 1, 1, 3]])
For convenience, this functionality is also available via the oindex property. E.g.:
>>> z.oindex[[1, 4], [1, 4]] = 4 >>> z[...] array([[0, 1, 2, 3, 4], [1, 4, 1, 1, 4], [0, 2, 0, 0, 2], [5, 6, 7, 8, 9], [1, 4, 1, 1, 4]])
- update_attributes(new_attributes: dict[str, zarr.core.common.JSON]) Array [source]#
Update the array’s attributes.
- Parameters:
- new_attributesdict
A dictionary of new attributes to update or add to the array. The keys represent attribute names, and the values must be JSON-compatible.
- Returns:
- Array
The array with the updated attributes.
- Raises:
- ValueError
If the attributes are invalid or incompatible with the array’s metadata.
Notes
The updated attributes will be merged with existing attributes, and any conflicts will be overwritten by the new values.
- property attrs: zarr.core.attributes.Attributes#
Returns a MutableMapping containing user-defined attributes.
- Returns:
- attrsMutableMapping
A MutableMapping object containing user-defined attributes.
Notes
Note that attribute values must be JSON serializable.
- property blocks: zarr.core.indexing.BlockIndex#
Shortcut for blocked chunked indexing, see
get_block_selection()
andset_block_selection()
for documentation and examples.
- property cdata_shape: zarr.core.common.ChunkCoords#
The shape of the chunk grid for this array.
- property chunks: zarr.core.common.ChunkCoords#
Returns a tuple of integers describing the length of each dimension of a chunk of the array. If sharding is used the inner chunk shape is returned.
Only defined for arrays using using RegularChunkGrid. If array doesn’t use RegularChunkGrid, NotImplementedError is raised.
- Returns:
- tuple
A tuple of integers representing the length of each dimension of a chunk.
- property compressor: numcodecs.abc.Codec | None#
Compressor that is applied to each chunk of the array.
Deprecated since version 3.0.0: array.compressor is deprecated and will be removed in a future release. Use array.compressors instead.
- property compressors: tuple[numcodecs.abc.Codec, Ellipsis] | tuple[zarr.abc.codec.BytesBytesCodec, Ellipsis]#
Compressors that are applied to each chunk of the array. Compressors are applied in order, and after any filters are applied (if any are specified) and the data is serialized into bytes.
- property dtype: numpy.dtype[Any]#
Returns the NumPy data type.
- Returns:
- np.dtype
The NumPy data type.
- property fill_value: Any#
- property filters: tuple[numcodecs.abc.Codec, Ellipsis] | tuple[zarr.abc.codec.ArrayArrayCodec, Ellipsis]#
Filters that are applied to each chunk of the array, in order, before serializing that chunk to bytes.
- property info: Any#
Return the statically known information for an array.
- Returns:
- ArrayInfo
See also
Array.info_complete
All information about a group, including dynamic information like the number of bytes and chunks written.
Examples
>>> arr = zarr.create(shape=(10,), chunks=(2,), dtype="float32") >>> arr.info Type : Array Zarr format : 3 Data type : DataType.float32 Shape : (10,) Chunk shape : (2,) Order : C Read-only : False Store type : MemoryStore Codecs : [BytesCodec(endian=<Endian.little: 'little'>)] No. bytes : 40
- property metadata: zarr.core.metadata.ArrayMetadata#
- property nbytes: int#
The total number of bytes that can be stored in the chunks of this array.
Notes
This value is calculated by multiplying the number of elements in the array and the size of each element, the latter of which is determined by the dtype of the array. For this reason,
nbytes
will likely be inaccurate for arrays with variable-length dtypes. It is not possible to determine the size of an array with variable-length elements from the shape and dtype alone.
- property nchunks_initialized: int#
Calculate the number of chunks that have been initialized, i.e. the number of chunks that have been persisted to the storage backend.
- Returns:
- nchunks_initializedint
The number of chunks that have been initialized.
Notes
On
Array
this is a (synchronous) property, unlike asynchronous functionAsyncArray.nchunks_initialized()
.Examples
>>> arr = await zarr.create(shape=(10,), chunks=(2,)) >>> arr.nchunks_initialized 0 >>> arr[:5] = 1 >>> arr.nchunks_initialized 3
- property ndim: int#
Returns the number of dimensions in the array.
- Returns:
- int
The number of dimensions in the array.
- property oindex: zarr.core.indexing.OIndex#
Shortcut for orthogonal (outer) indexing, see
get_orthogonal_selection()
andset_orthogonal_selection()
for documentation and examples.
- property order: zarr.core.common.MemoryOrder#
- property serializer: None | zarr.abc.codec.ArrayBytesCodec#
Array-to-bytes codec to use for serializing the chunks into bytes.
- property shape: zarr.core.common.ChunkCoords#
Returns the shape of the array.
- Returns:
- ChunkCoords
The shape of the array.
- property shards: zarr.core.common.ChunkCoords | None#
Returns a tuple of integers describing the length of each dimension of a shard of the array. Returns None if sharding is not used.
Only defined for arrays using using RegularChunkGrid. If array doesn’t use RegularChunkGrid, NotImplementedError is raised.
- Returns:
- tuple | None
A tuple of integers representing the length of each dimension of a shard or None if sharding is not used.
- property size: int#
Returns the total number of elements in the array.
- Returns:
- int
Total number of elements in the array.
- property store: zarr.abc.store.Store#
- property store_path: zarr.storage._common.StorePath#
- property vindex: zarr.core.indexing.VIndex#
Shortcut for vectorized (inner) indexing, see
get_coordinate_selection()
,set_coordinate_selection()
,get_mask_selection()
andset_mask_selection()
for documentation and examples.
- class zarr.AsyncArray(
- metadata: zarr.core.metadata.ArrayV2Metadata | zarr.core.metadata.ArrayV2MetadataDict,
- store_path: zarr.storage._common.StorePath,
- config: zarr.core.array_spec.ArrayConfig | None = None,
- class zarr.AsyncArray(
- metadata: zarr.core.metadata.ArrayV3Metadata | zarr.core.metadata.ArrayV3MetadataDict,
- store_path: zarr.storage._common.StorePath,
- config: zarr.core.array_spec.ArrayConfig | None = None,
Bases:
Generic
[zarr.core.metadata.T_ArrayMetadata
]An asynchronous array class representing a chunked array stored in a Zarr store.
- Parameters:
- metadataArrayMetadata
The metadata of the array.
- store_pathStorePath
The path to the Zarr store.
- configArrayConfig, optional
The runtime configuration of the array, by default None.
- Attributes:
- metadataArrayMetadata
The metadata of the array.
- store_pathStorePath
The path to the Zarr store.
- codec_pipelineCodecPipeline
The codec pipeline used for encoding and decoding chunks.
- _configArrayConfig
The runtime configuration of the array.
- async append(
- data: numpy.typing.ArrayLike,
- axis: int = 0,
Append data to axis.
- Parameters:
- dataarray-like
Data to be appended.
- axisint
Axis along which to append.
- Returns:
- new_shapetuple
Notes
The size of all dimensions other than axis must match between this array and data.
- classmethod create(
- store: zarr.storage.StoreLike,
- *,
- shape: zarr.core.common.ShapeLike,
- dtype: numpy.typing.DTypeLike,
- zarr_format: Literal[2],
- fill_value: Any | None = None,
- attributes: dict[str, zarr.core.common.JSON] | None = None,
- chunks: zarr.core.common.ShapeLike | None = None,
- dimension_separator: Literal['.', '/'] | None = None,
- order: zarr.core.common.MemoryOrder | None = None,
- filters: list[dict[str, zarr.core.common.JSON]] | None = None,
- compressor: dict[str, zarr.core.common.JSON] | None = None,
- overwrite: bool = False,
- data: numpy.typing.ArrayLike | None = None,
- config: zarr.core.array_spec.ArrayConfig | zarr.core.array_spec.ArrayConfigLike | None = None,
- classmethod create(
- store: zarr.storage.StoreLike,
- *,
- shape: zarr.core.common.ShapeLike,
- dtype: numpy.typing.DTypeLike,
- zarr_format: Literal[3],
- fill_value: Any | None = None,
- attributes: dict[str, zarr.core.common.JSON] | None = None,
- chunk_shape: zarr.core.common.ShapeLike | None = None,
- chunk_key_encoding: zarr.core.chunk_key_encodings.ChunkKeyEncoding | tuple[Literal['default'], Literal['.', '/']] | tuple[Literal['v2'], Literal['.', '/']] | None = None,
- codecs: collections.abc.Iterable[zarr.abc.codec.Codec | dict[str, zarr.core.common.JSON]] | None = None,
- dimension_names: collections.abc.Iterable[str] | None = None,
- overwrite: bool = False,
- data: numpy.typing.ArrayLike | None = None,
- config: zarr.core.array_spec.ArrayConfig | zarr.core.array_spec.ArrayConfigLike | None = None,
- classmethod create(
- store: zarr.storage.StoreLike,
- *,
- shape: zarr.core.common.ShapeLike,
- dtype: numpy.typing.DTypeLike,
- zarr_format: Literal[3] = 3,
- fill_value: Any | None = None,
- attributes: dict[str, zarr.core.common.JSON] | None = None,
- chunk_shape: zarr.core.common.ShapeLike | None = None,
- chunk_key_encoding: zarr.core.chunk_key_encodings.ChunkKeyEncoding | tuple[Literal['default'], Literal['.', '/']] | tuple[Literal['v2'], Literal['.', '/']] | None = None,
- codecs: collections.abc.Iterable[zarr.abc.codec.Codec | dict[str, zarr.core.common.JSON]] | None = None,
- dimension_names: collections.abc.Iterable[str] | None = None,
- overwrite: bool = False,
- data: numpy.typing.ArrayLike | None = None,
- config: zarr.core.array_spec.ArrayConfig | zarr.core.array_spec.ArrayConfigLike | None = None,
- classmethod create(
- store: zarr.storage.StoreLike,
- *,
- shape: zarr.core.common.ShapeLike,
- dtype: numpy.typing.DTypeLike,
- zarr_format: zarr.core.common.ZarrFormat,
- fill_value: Any | None = None,
- attributes: dict[str, zarr.core.common.JSON] | None = None,
- chunk_shape: zarr.core.common.ShapeLike | None = None,
- chunk_key_encoding: zarr.core.chunk_key_encodings.ChunkKeyEncoding | tuple[Literal['default'], Literal['.', '/']] | tuple[Literal['v2'], Literal['.', '/']] | None = None,
- codecs: collections.abc.Iterable[zarr.abc.codec.Codec | dict[str, zarr.core.common.JSON]] | None = None,
- dimension_names: collections.abc.Iterable[str] | None = None,
- chunks: zarr.core.common.ShapeLike | None = None,
- dimension_separator: Literal['.', '/'] | None = None,
- order: zarr.core.common.MemoryOrder | None = None,
- filters: list[dict[str, zarr.core.common.JSON]] | None = None,
- compressor: dict[str, zarr.core.common.JSON] | None = None,
- overwrite: bool = False,
- data: numpy.typing.ArrayLike | None = None,
- config: zarr.core.array_spec.ArrayConfig | zarr.core.array_spec.ArrayConfigLike | None = None,
- Async:
Method to create a new asynchronous array instance.
Deprecated since version 3.0.0: Deprecated in favor of
zarr.api.asynchronous.create_array()
.- Parameters:
- storeStoreLike
The store where the array will be created.
- shapeShapeLike
The shape of the array.
- dtypenpt.DTypeLike
The data type of the array.
- zarr_formatZarrFormat, optional
The Zarr format version (default is 3).
- fill_valueAny, optional
The fill value of the array (default is None).
- attributesdict[str, JSON], optional
The attributes of the array (default is None).
- chunk_shapeChunkCoords, optional
The shape of the array’s chunks Zarr format 3 only. Zarr format 2 arrays should use chunks instead. If not specified, default are guessed based on the shape and dtype.
- chunk_key_encodingChunkKeyEncoding, optional
A specification of how the chunk keys are represented in storage. Zarr format 3 only. Zarr format 2 arrays should use dimension_separator instead. Default is
("default", "/")
.- codecsSequence of Codecs or dicts, optional
An iterable of Codec or dict serializations of Codecs. The elements of this collection specify the transformation from array values to stored bytes. Zarr format 3 only. Zarr format 2 arrays should use
filters
andcompressor
instead.If no codecs are provided, default codecs will be used:
For numeric arrays, the default is
BytesCodec
andZstdCodec
.For Unicode strings, the default is
VLenUTF8Codec
andZstdCodec
.For bytes or objects, the default is
VLenBytesCodec
andZstdCodec
.
These defaults can be changed by modifying the value of
array.v3_default_filters
,array.v3_default_serializer
andarray.v3_default_compressors
inzarr.core.config
.- dimension_namesIterable[str], optional
The names of the dimensions (default is None). Zarr format 3 only. Zarr format 2 arrays should not use this parameter.
- chunksShapeLike, optional
The shape of the array’s chunks. Zarr format 2 only. Zarr format 3 arrays should use
chunk_shape
instead. If not specified, default are guessed based on the shape and dtype.- dimension_separatorLiteral[“.”, “/”], optional
The dimension separator (default is “.”). Zarr format 2 only. Zarr format 3 arrays should use
chunk_key_encoding
instead.- orderLiteral[“C”, “F”], optional
The memory of the array (default is “C”). If
zarr_format
is 2, this parameter sets the memory order of the array. If zarr_format` is 3, then this parameter is deprecated, because memory order is a runtime parameter for Zarr 3 arrays. The recommended way to specify the memory order for Zarr 3 arrays is via theconfig
parameter, e.g.{'config': 'C'}
.- filterslist[dict[str, JSON]], optional
Sequence of filters to use to encode chunk data prior to compression. Zarr format 2 only. Zarr format 3 arrays should use
codecs
instead. If nofilters
are provided, a default set of filters will be used. These defaults can be changed by modifying the value ofarray.v2_default_filters
inzarr.core.config
.- compressordict[str, JSON], optional
The compressor used to compress the data (default is None). Zarr format 2 only. Zarr format 3 arrays should use
codecs
instead.If no
compressor
is provided, a default compressor will be used:For numeric arrays, the default is
ZstdCodec
.For Unicode strings, the default is
VLenUTF8Codec
.For bytes or objects, the default is
VLenBytesCodec
.
These defaults can be changed by modifying the value of
array.v2_default_compressor
inzarr.core.config
.- overwritebool, optional
Whether to raise an error if the store already exists (default is False).
- datanpt.ArrayLike, optional
The data to be inserted into the array (default is None).
- configArrayConfig or ArrayConfigLike, optional
Runtime configuration for the array.
- Returns:
- AsyncArray
The created asynchronous array instance.
- classmethod from_dict( ) AsyncArray[zarr.core.metadata.ArrayV3Metadata] | AsyncArray[zarr.core.metadata.ArrayV2Metadata] [source]#
Create a Zarr array from a dictionary, with support for both Zarr format 2 and 3 metadata.
- Parameters:
- store_pathStorePath
The path within the store where the array should be created.
- datadict
A dictionary representing the array data. This dictionary should include necessary metadata for the array, such as shape, dtype, and other attributes. The format of the metadata will determine whether a Zarr format 2 or 3 array is created.
- Returns:
- AsyncArray[ArrayV3Metadata] or AsyncArray[ArrayV2Metadata]
The created Zarr array, either using Zarr format 2 or 3 metadata based on the provided data.
- Raises:
- ValueError
If the dictionary data is invalid or incompatible with either Zarr format 2 or 3 array creation.
- async getitem(
- selection: zarr.core.indexing.BasicSelection,
- *,
- prototype: zarr.core.buffer.BufferPrototype | None = None,
Asynchronous function that retrieves a subset of the array’s data based on the provided selection.
- Parameters:
- selectionBasicSelection
A selection object specifying the subset of data to retrieve.
- prototypeBufferPrototype, optional
A buffer prototype to use for the retrieved data (default is None).
- Returns:
- NDArrayLike
The retrieved subset of the array’s data.
Examples
>>> import zarr >>> store = zarr.storage.MemoryStore(mode='w') >>> async_arr = await zarr.api.asynchronous.create_array( ... store=store, ... shape=(100,100), ... chunks=(10,10), ... dtype='i4', ... fill_value=0) <AsyncArray memory://... shape=(100, 100) dtype=int32> >>> await async_arr.getitem((0,1)) array(0, dtype=int32)
- async info_complete() Any [source]#
Return all the information for an array, including dynamic information like a storage size.
In addition to the static information, this provides
The count of chunks initialized
The sum of the bytes written
- Returns:
- ArrayInfo
See also
AsyncArray.info
A property giving just the statically known information about an array.
- async nchunks_initialized() int [source]#
Calculate the number of chunks that have been initialized, i.e. the number of chunks that have been persisted to the storage backend.
- Returns:
- nchunks_initializedint
The number of chunks that have been initialized.
Notes
On
AsyncArray
this is an asynchronous method, unlike the (synchronous) propertyArray.nchunks_initialized
.Examples
>>> arr = await zarr.api.asynchronous.create(shape=(10,), chunks=(2,)) >>> await arr.nchunks_initialized() 0 >>> await arr.setitem(slice(5), 1) >>> await arr.nchunks_initialized() 3
- classmethod open(
- store: zarr.storage.StoreLike,
- zarr_format: zarr.core.common.ZarrFormat | None = 3,
- Async:
Async method to open an existing Zarr array from a given store.
- Parameters:
- storeStoreLike
The store containing the Zarr array.
- zarr_formatZarrFormat | None, optional
The Zarr format version (default is 3).
- Returns:
- AsyncArray
The opened Zarr array.
Examples
>>> import zarr >>> store = zarr.storage.MemoryStore(mode='w') >>> async_arr = await AsyncArray.open(store) <AsyncArray memory://... shape=(100, 100) dtype=int32>
- async resize(
- new_shape: zarr.core.common.ShapeLike,
- delete_outside_chunks: bool = True,
Asynchronously resize the array to a new shape.
- Parameters:
- new_shapeChunkCoords
The desired new shape of the array.
- delete_outside_chunksbool, optional
If True (default), chunks that fall outside the new shape will be deleted. If False, the data in those chunks will be preserved.
- Returns:
- AsyncArray
The resized array.
- Raises:
- ValueError
If the new shape is incompatible with the current array’s chunking configuration.
Notes
This method is asynchronous and should be awaited.
- async setitem(
- selection: zarr.core.indexing.BasicSelection,
- value: numpy.typing.ArrayLike,
- prototype: zarr.core.buffer.BufferPrototype | None = None,
Asynchronously set values in the array using basic indexing.
- Parameters:
- selectionBasicSelection
The selection defining the region of the array to set.
- valuenumpy.typing.ArrayLike
The values to be written into the selected region of the array.
- prototypeBufferPrototype or None, optional
A prototype buffer that defines the structure and properties of the array chunks being modified. If None, the default buffer prototype is used. Default is None.
- Returns:
- None
This method does not return any value.
- Raises:
- IndexError
If the selection is out of bounds for the array.
- ValueError
If the values are not compatible with the array’s dtype or shape.
Notes
This method is asynchronous and should be awaited.
Supports basic indexing, where the selection is contiguous and does not involve advanced indexing.
- async update_attributes(new_attributes: dict[str, zarr.core.common.JSON]) Self [source]#
Asynchronously update the array’s attributes.
- Parameters:
- new_attributesdict of str to JSON
A dictionary of new attributes to update or add to the array. The keys represent attribute names, and the values must be JSON-compatible.
- Returns:
- AsyncArray
The array with the updated attributes.
- Raises:
- ValueError
If the attributes are invalid or incompatible with the array’s metadata.
Notes
This method is asynchronous and should be awaited.
The updated attributes will be merged with existing attributes, and any conflicts will be overwritten by the new values.
- property attrs: dict[str, zarr.core.common.JSON]#
Returns the attributes of the array.
- Returns:
- dict
Attributes of the array
- property basename: str#
Final component of name.
- Returns:
- str
The basename or final component of the array name.
- property cdata_shape: zarr.core.common.ChunkCoords#
The shape of the chunk grid for this array.
- Returns:
- Tuple[int]
The shape of the chunk grid for this array.
- property chunks: zarr.core.common.ChunkCoords#
Returns the chunk shape of the Array. If sharding is used the inner chunk shape is returned.
Only defined for arrays using using RegularChunkGrid. If array doesn’t use RegularChunkGrid, NotImplementedError is raised.
- Returns:
- ChunkCoords:
The chunk shape of the Array.
- codec_pipeline: zarr.abc.codec.CodecPipeline#
- property compressor: numcodecs.abc.Codec | None#
Compressor that is applied to each chunk of the array.
Deprecated since version 3.0.0: array.compressor is deprecated and will be removed in a future release. Use array.compressors instead.
- property compressors: tuple[numcodecs.abc.Codec, Ellipsis] | tuple[zarr.abc.codec.BytesBytesCodec, Ellipsis]#
Compressors that are applied to each chunk of the array. Compressors are applied in order, and after any filters are applied (if any are specified) and the data is serialized into bytes.
- property dtype: numpy.dtype[Any]#
Returns the data type of the array.
- Returns:
- np.dtype
Data type of the array
- property filters: tuple[numcodecs.abc.Codec, Ellipsis] | tuple[zarr.abc.codec.ArrayArrayCodec, Ellipsis]#
Filters that are applied to each chunk of the array, in order, before serializing that chunk to bytes.
- property info: Any#
Return the statically known information for an array.
- Returns:
- ArrayInfo
See also
AsyncArray.info_complete
All information about a group, including dynamic information like the number of bytes and chunks written.
Examples
>>> arr = await zarr.api.asynchronous.create( ... path="array", shape=(3, 4, 5), chunks=(2, 2, 2)) ... ) >>> arr.info Type : Array Zarr format : 3 Data type : DataType.float64 Shape : (3, 4, 5) Chunk shape : (2, 2, 2) Order : C Read-only : False Store type : MemoryStore Codecs : [{'endian': <Endian.little: 'little'>}] No. bytes : 480
- metadata: zarr.core.metadata.T_ArrayMetadata#
- property nbytes: int#
The total number of bytes that can be stored in the chunks of this array.
Notes
This value is calculated by multiplying the number of elements in the array and the size of each element, the latter of which is determined by the dtype of the array. For this reason,
nbytes
will likely be inaccurate for arrays with variable-length dtypes. It is not possible to determine the size of an array with variable-length elements from the shape and dtype alone.
- property nchunks: int#
The number of chunks in the stored representation of this array.
- Returns:
- int
The total number of chunks in the array.
- property ndim: int#
Returns the number of dimensions in the Array.
- Returns:
- int
The number of dimensions in the Array.
- property order: zarr.core.common.MemoryOrder#
Returns the memory order of the array.
- Returns:
- bool
Memory order of the array
- property read_only: bool#
Returns True if the array is read-only.
- Returns:
- bool
True if the array is read-only
- property serializer: zarr.abc.codec.ArrayBytesCodec | None#
Array-to-bytes codec to use for serializing the chunks into bytes.
- property shape: zarr.core.common.ChunkCoords#
Returns the shape of the Array.
- Returns:
- tuple
The shape of the Array.
- property shards: zarr.core.common.ChunkCoords | None#
Returns the shard shape of the Array. Returns None if sharding is not used.
Only defined for arrays using using RegularChunkGrid. If array doesn’t use RegularChunkGrid, NotImplementedError is raised.
- Returns:
- ChunkCoords:
The shard shape of the Array.
- property size: int#
Returns the total number of elements in the array
- Returns:
- int
Total number of elements in the array
- property store: zarr.abc.store.Store#
- store_path: zarr.storage._common.StorePath#
- class zarr.AsyncGroup[source]#
Asynchronous Group object.
- async array_keys() collections.abc.AsyncGenerator[str, None] [source]#
Iterate over array names.
- async array_values() collections.abc.AsyncGenerator[zarr.core.array.AsyncArray[zarr.core.metadata.ArrayV2Metadata] | zarr.core.array.AsyncArray[zarr.core.metadata.ArrayV3Metadata], None] [source]#
Iterate over array values.
- async arrays() collections.abc.AsyncGenerator[tuple[str, zarr.core.array.AsyncArray[zarr.core.metadata.ArrayV2Metadata] | zarr.core.array.AsyncArray[zarr.core.metadata.ArrayV3Metadata]], None] [source]#
Iterate over arrays.
- async contains(member: str) bool [source]#
Check if a member exists in the group.
- Parameters:
- memberstr
Member name.
- Returns:
- bool
- async create_array(
- name: str,
- *,
- shape: zarr.core.common.ShapeLike,
- dtype: numpy.typing.DTypeLike,
- chunks: zarr.core.common.ChunkCoords | Literal['auto'] = 'auto',
- shards: zarr.core.array.ShardsLike | None = None,
- filters: zarr.core.array.FiltersLike = 'auto',
- compressors: zarr.core.array.CompressorsLike = 'auto',
- compressor: zarr.core.array.CompressorLike = 'auto',
- serializer: zarr.core.array.SerializerLike = 'auto',
- fill_value: Any | None = 0,
- order: zarr.core.common.MemoryOrder | None = None,
- attributes: dict[str, zarr.core.common.JSON] | None = None,
- chunk_key_encoding: zarr.core.chunk_key_encodings.ChunkKeyEncoding | zarr.core.chunk_key_encodings.ChunkKeyEncodingLike | None = None,
- dimension_names: collections.abc.Iterable[str] | None = None,
- storage_options: dict[str, Any] | None = None,
- overwrite: bool = False,
- config: zarr.core.array_spec.ArrayConfig | zarr.core.array_spec.ArrayConfigLike | None = None,
Create an array within this group.
This method lightly wraps
zarr.core.array.create_array()
.- Parameters:
- namestr
The name of the array relative to the group. If
path
isNone
, the array will be located at the root of the store.- shapeChunkCoords
Shape of the array.
- dtypenpt.DTypeLike
Data type of the array.
- chunksChunkCoords, optional
Chunk shape of the array. If not specified, default are guessed based on the shape and dtype.
- shardsChunkCoords, optional
Shard shape of the array. The default value of
None
results in no sharding at all.- filtersIterable[Codec], optional
Iterable of filters to apply to each chunk of the array, in order, before serializing that chunk to bytes.
For Zarr format 3, a “filter” is a codec that takes an array and returns an array, and these values must be instances of
ArrayArrayCodec
, or dict representations ofArrayArrayCodec
. If nofilters
are provided, a default set of filters will be used. These defaults can be changed by modifying the value ofarray.v3_default_filters
inzarr.core.config
. UseNone
to omit default filters.For Zarr format 2, a “filter” can be any numcodecs codec; you should ensure that the the order if your filters is consistent with the behavior of each filter. If no
filters
are provided, a default set of filters will be used. These defaults can be changed by modifying the value ofarray.v2_default_filters
inzarr.core.config
. UseNone
to omit default filters.- compressorsIterable[Codec], optional
List of compressors to apply to the array. Compressors are applied in order, and after any filters are applied (if any are specified) and the data is serialized into bytes.
For Zarr format 3, a “compressor” is a codec that takes a bytestream, and returns another bytestream. Multiple compressors my be provided for Zarr format 3. If no
compressors
are provided, a default set of compressors will be used. These defaults can be changed by modifying the value ofarray.v3_default_compressors
inzarr.core.config
. UseNone
to omit default compressors.For Zarr format 2, a “compressor” can be any numcodecs codec. Only a single compressor may be provided for Zarr format 2. If no
compressor
is provided, a default compressor will be used. inzarr.core.config
. UseNone
to omit the default compressor.- compressorCodec, optional
Deprecated in favor of
compressors
.- serializerdict[str, JSON] | ArrayBytesCodec, optional
Array-to-bytes codec to use for encoding the array data. Zarr format 3 only. Zarr format 2 arrays use implicit array-to-bytes conversion. If no
serializer
is provided, a default serializer will be used. These defaults can be changed by modifying the value ofarray.v3_default_serializer
inzarr.core.config
.- fill_valueAny, optional
Fill value for the array.
- order{“C”, “F”}, optional
The memory of the array (default is “C”). For Zarr format 2, this parameter sets the memory order of the array. For Zarr format 3, this parameter is deprecated, because memory order is a runtime parameter for Zarr format 3 arrays. The recommended way to specify the memory order for Zarr format 3 arrays is via the
config
parameter, e.g.{'config': 'C'}
. If noorder
is provided, a default order will be used. This default can be changed by modifying the value ofarray.order
inzarr.core.config
.- attributesdict, optional
Attributes for the array.
- chunk_key_encodingChunkKeyEncoding, optional
A specification of how the chunk keys are represented in storage. For Zarr format 3, the default is
{"name": "default", "separator": "/"}}
. For Zarr format 2, the default is{"name": "v2", "separator": "."}}
.- dimension_namesIterable[str], optional
The names of the dimensions (default is None). Zarr format 3 only. Zarr format 2 arrays should not use this parameter.
- storage_optionsdict, optional
If using an fsspec URL to create the store, these will be passed to the backend implementation. Ignored otherwise.
- overwritebool, default False
Whether to overwrite an array with the same name in the store, if one exists.
- configArrayConfig or ArrayConfigLike, optional
Runtime configuration for the array.
- Returns:
- AsyncArray
- async create_dataset(
- name: str,
- *,
- shape: zarr.core.common.ShapeLike,
- **kwargs: Any,
Create an array.
Deprecated since version 3.0.0: The h5py compatibility methods will be removed in 3.1.0. Use AsyncGroup.create_array instead.
Arrays are known as “datasets” in HDF5 terminology. For compatibility with h5py, Zarr groups also implement the
zarr.AsyncGroup.require_dataset()
method.- Parameters:
- namestr
Array name.
- **kwargsdict
Additional arguments passed to
zarr.AsyncGroup.create_array()
.
- Returns:
- aAsyncArray
- async create_group( ) AsyncGroup [source]#
Create a sub-group.
- Parameters:
- namestr
Group name.
- overwritebool, optional
If True, do not raise an error if the group already exists.
- attributesdict, optional
Group attributes.
- Returns:
- gAsyncGroup
- async empty(
- *,
- name: str,
- shape: zarr.core.common.ChunkCoords,
- **kwargs: Any,
Create an empty array in this Group.
- Parameters:
- namestr
Name of the array.
- shapeint or tuple of int
Shape of the empty array.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
Notes
The contents of an empty Zarr array are not defined. On attempting to retrieve data from an empty Zarr array, any values may be returned, and these are not guaranteed to be stable from one access to the next.
- async empty_like(
- *,
- name: str,
- data: zarr.api.asynchronous.ArrayLike,
- **kwargs: Any,
Create an empty sub-array like data.
- Parameters:
- namestr
Name of the array.
- dataarray-like
The array to create an empty array like.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- AsyncArray
The new array.
- classmethod from_dict(
- store_path: zarr.storage.StorePath,
- data: dict[str, Any],
- classmethod from_store(
- store: zarr.storage.StoreLike,
- *,
- attributes: dict[str, Any] | None = None,
- overwrite: bool = False,
- zarr_format: zarr.core.common.ZarrFormat = 3,
- Async:
- async full( ) zarr.core.array.AsyncArray[zarr.core.metadata.ArrayV2Metadata] | zarr.core.array.AsyncArray[zarr.core.metadata.ArrayV3Metadata] [source]#
Create an array, with “fill_value” being used as the default value for uninitialized portions of the array.
- Parameters:
- namestr
Name of the array.
- shapeint or tuple of int
Shape of the empty array.
- fill_valuescalar
Value to fill the array with.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- AsyncArray
The new array.
- async full_like(
- *,
- name: str,
- data: zarr.api.asynchronous.ArrayLike,
- **kwargs: Any,
Create a sub-array like data filled with the fill_value of data .
- Parameters:
- namestr
Name of the array.
- dataarray-like
The array to create the new array like.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- AsyncArray
The new array.
- async get( ) zarr.core.array.AsyncArray[Any] | AsyncGroup | DefaultT | None [source]#
Obtain a group member, returning default if not found.
- Parameters:
- keystr
Group member name.
- defaultobject
Default value to return if key is not found (default: None).
- Returns:
- object
Group member (AsyncArray or AsyncGroup) or default if not found.
- async getitem(
- key: str,
Get a subarray or subgroup from the group.
- Parameters:
- keystr
Array or group name
- Returns:
- AsyncArray or AsyncGroup
- async group_keys() collections.abc.AsyncGenerator[str, None] [source]#
Iterate over group names.
- async group_values() collections.abc.AsyncGenerator[AsyncGroup, None] [source]#
Iterate over group values.
- async groups() collections.abc.AsyncGenerator[tuple[str, AsyncGroup], None] [source]#
Iterate over subgroups.
- async info_complete() Any [source]#
Return all the information for a group.
This includes dynamic information like the number of child Groups or Arrays. If this group doesn’t contain consolidated metadata then this will need to read from the backing Store.
- Returns:
- GroupInfo
See also
- async keys() collections.abc.AsyncGenerator[str, None] [source]#
Iterate over member names.
- async members( ) collections.abc.AsyncGenerator[tuple[str, zarr.core.array.AsyncArray[zarr.core.metadata.ArrayV2Metadata] | zarr.core.array.AsyncArray[zarr.core.metadata.ArrayV3Metadata] | AsyncGroup], None] [source]#
Returns an AsyncGenerator over the arrays and groups contained in this group. This method requires that store_path.store supports directory listing.
The results are not guaranteed to be ordered.
- Parameters:
- max_depthint, default 0
The maximum number of levels of the hierarchy to include. By default, (
max_depth=0
) only immediate children are included. Setmax_depth=None
to include all nodes, and some positive integer to consider children within that many levels of the root Group.
- Returns:
- path:
A string giving the path to the target, relative to the Group
self
.- value: AsyncArray or AsyncGroup
The AsyncArray or AsyncGroup that is a child of
self
.
- abstract move(source: str, dest: str) None [source]#
- Async:
Move a sub-group or sub-array from one path to another.
Notes
Not implemented
- async nmembers(max_depth: int | None = 0) int [source]#
Count the number of members in this group.
- Parameters:
- max_depthint, default 0
The maximum number of levels of the hierarchy to include. By default, (
max_depth=0
) only immediate children are included. Setmax_depth=None
to include all nodes, and some positive integer to consider children within that many levels of the root Group.
- Returns:
- countint
- async ones(
- *,
- name: str,
- shape: zarr.core.common.ChunkCoords,
- **kwargs: Any,
Create an array, with one being used as the default value for uninitialized portions of the array.
- Parameters:
- namestr
Name of the array.
- shapeint or tuple of int
Shape of the empty array.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- AsyncArray
The new array.
- async ones_like(
- *,
- name: str,
- data: zarr.api.asynchronous.ArrayLike,
- **kwargs: Any,
Create a sub-array of ones like data.
- Parameters:
- namestr
Name of the array.
- dataarray-like
The array to create the new array like.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- AsyncArray
The new array.
- classmethod open(
- store: zarr.storage.StoreLike,
- zarr_format: zarr.core.common.ZarrFormat | None = 3,
- use_consolidated: bool | str | None = None,
- Async:
Open a new AsyncGroup
- Parameters:
- storeStoreLike
- zarr_format{2, 3}, optional
- use_consolidatedbool or str, default None
Whether to use consolidated metadata.
By default, consolidated metadata is used if it’s present in the store (in the
zarr.json
for Zarr format 3 and in the.zmetadata
file for Zarr format 2).To explicitly require consolidated metadata, set
use_consolidated=True
, which will raise an exception if consolidated metadata is not found.To explicitly not use consolidated metadata, set
use_consolidated=False
, which will fall back to using the regular, non consolidated metadata.Zarr format 2 allowed configuring the key storing the consolidated metadata (
.zmetadata
by default). Specify the custom key asuse_consolidated
to load consolidated metadata from a non-default key.
- async require_array(
- name: str,
- *,
- shape: zarr.core.common.ShapeLike,
- dtype: numpy.typing.DTypeLike = None,
- exact: bool = False,
- **kwargs: Any,
Obtain an array, creating if it doesn’t exist.
Other kwargs are as per
zarr.AsyncGroup.create_dataset()
.- Parameters:
- namestr
Array name.
- shapeint or tuple of ints
Array shape.
- dtypestr or dtype, optional
NumPy dtype.
- exactbool, optional
If True, require dtype to match exactly. If false, require dtype can be cast from array dtype.
- Returns:
- aAsyncArray
- async require_dataset(
- name: str,
- *,
- shape: zarr.core.common.ChunkCoords,
- dtype: numpy.typing.DTypeLike = None,
- exact: bool = False,
- **kwargs: Any,
Obtain an array, creating if it doesn’t exist.
Deprecated since version 3.0.0: The h5py compatibility methods will be removed in 3.1.0. Use AsyncGroup.require_dataset instead.
Arrays are known as “datasets” in HDF5 terminology. For compatibility with h5py, Zarr groups also implement the
zarr.AsyncGroup.create_dataset()
method.Other kwargs are as per
zarr.AsyncGroup.create_dataset()
.- Parameters:
- namestr
Array name.
- shapeint or tuple of ints
Array shape.
- dtypestr or dtype, optional
NumPy dtype.
- exactbool, optional
If True, require dtype to match exactly. If false, require dtype can be cast from array dtype.
- Returns:
- aAsyncArray
- async require_group(name: str, overwrite: bool = False) AsyncGroup [source]#
Obtain a sub-group, creating one if it doesn’t exist.
- Parameters:
- namestr
Group name.
- overwritebool, optional
Overwrite any existing group with given name if present.
- Returns:
- gAsyncGroup
- async require_groups(*names: str) tuple[AsyncGroup, Ellipsis] [source]#
Convenience method to require multiple groups in a single call.
- Parameters:
- *namesstr
Group names.
- Returns:
- Tuple[AsyncGroup, …]
- async setitem(key: str, value: Any) None [source]#
Fastpath for creating a new array New arrays will be created with default array settings for the array type.
- Parameters:
- keystr
Array name
- valuearray-like
Array data
- async tree(expand: bool | None = None, level: int | None = None) Any [source]#
Return a tree-like representation of a hierarchy.
This requires the optional
rich
dependency.- Parameters:
- expandbool, optional
This keyword is not yet supported. A NotImplementedError is raised if it’s used.
- levelint, optional
The maximum depth below this Group to display in the tree.
- Returns:
- TreeRepr
A pretty-printable object displaying the hierarchy.
- async update_attributes(new_attributes: dict[str, Any]) AsyncGroup [source]#
Update group attributes.
- Parameters:
- new_attributesdict
New attributes to set on the group.
- Returns:
- selfAsyncGroup
- async zeros(
- *,
- name: str,
- shape: zarr.core.common.ChunkCoords,
- **kwargs: Any,
Create an array, with zero being used as the default value for uninitialized portions of the array.
- Parameters:
- namestr
Name of the array.
- shapeint or tuple of int
Shape of the empty array.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- AsyncArray
The new array.
- async zeros_like(
- *,
- name: str,
- data: zarr.api.asynchronous.ArrayLike,
- **kwargs: Any,
Create a sub-array of zeros like data.
- Parameters:
- namestr
Name of the array.
- dataarray-like
The array to create the new array like.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- AsyncArray
The new array.
- property info: Any#
Return a visual representation of the statically known information about a group.
Note that this doesn’t include dynamic information, like the number of child Groups or Arrays.
- Returns:
- GroupInfo
See also
AsyncGroup.info_complete
All information about a group, including dynamic information
- metadata: GroupMetadata#
- property store: zarr.abc.store.Store#
- store_path: zarr.storage.StorePath#
- class zarr.Group[source]#
Bases:
zarr.core.sync.SyncMixin
- array(
- name: str,
- *,
- shape: zarr.core.common.ShapeLike,
- dtype: numpy.typing.DTypeLike,
- chunks: zarr.core.common.ChunkCoords | Literal['auto'] = 'auto',
- shards: zarr.core.common.ChunkCoords | Literal['auto'] | None = None,
- filters: zarr.core.array.FiltersLike = 'auto',
- compressors: zarr.core.array.CompressorsLike = 'auto',
- compressor: zarr.core.array.CompressorLike = None,
- serializer: zarr.core.array.SerializerLike = 'auto',
- fill_value: Any | None = 0,
- order: zarr.core.common.MemoryOrder | None = 'C',
- attributes: dict[str, zarr.core.common.JSON] | None = None,
- chunk_key_encoding: zarr.core.chunk_key_encodings.ChunkKeyEncoding | zarr.core.chunk_key_encodings.ChunkKeyEncodingLike | None = None,
- dimension_names: collections.abc.Iterable[str] | None = None,
- storage_options: dict[str, Any] | None = None,
- overwrite: bool = False,
- config: zarr.core.array_spec.ArrayConfig | zarr.core.array_spec.ArrayConfigLike | None = None,
- data: numpy.typing.ArrayLike | None = None,
Create an array within this group.
Deprecated since version 3.0.0: Use Group.create_array instead.
This method lightly wraps
zarr.core.array.create_array()
.- Parameters:
- namestr
The name of the array relative to the group. If
path
isNone
, the array will be located at the root of the store.- shapeChunkCoords
Shape of the array.
- dtypenpt.DTypeLike
Data type of the array.
- chunksChunkCoords, optional
Chunk shape of the array. If not specified, default are guessed based on the shape and dtype.
- shardsChunkCoords, optional
Shard shape of the array. The default value of
None
results in no sharding at all.- filtersIterable[Codec], optional
Iterable of filters to apply to each chunk of the array, in order, before serializing that chunk to bytes.
For Zarr format 3, a “filter” is a codec that takes an array and returns an array, and these values must be instances of
ArrayArrayCodec
, or dict representations ofArrayArrayCodec
. If nofilters
are provided, a default set of filters will be used. These defaults can be changed by modifying the value ofarray.v3_default_filters
inzarr.core.config
. UseNone
to omit default filters.For Zarr format 2, a “filter” can be any numcodecs codec; you should ensure that the the order if your filters is consistent with the behavior of each filter. If no
filters
are provided, a default set of filters will be used. These defaults can be changed by modifying the value ofarray.v2_default_filters
inzarr.core.config
. UseNone
to omit default filters.- compressorsIterable[Codec], optional
List of compressors to apply to the array. Compressors are applied in order, and after any filters are applied (if any are specified) and the data is serialized into bytes.
For Zarr format 3, a “compressor” is a codec that takes a bytestream, and returns another bytestream. Multiple compressors my be provided for Zarr format 3. If no
compressors
are provided, a default set of compressors will be used. These defaults can be changed by modifying the value ofarray.v3_default_compressors
inzarr.core.config
. UseNone
to omit default compressors.For Zarr format 2, a “compressor” can be any numcodecs codec. Only a single compressor may be provided for Zarr format 2. If no
compressor
is provided, a default compressor will be used. inzarr.core.config
. UseNone
to omit the default compressor.- compressorCodec, optional
Deprecated in favor of
compressors
.- serializerdict[str, JSON] | ArrayBytesCodec, optional
Array-to-bytes codec to use for encoding the array data. Zarr format 3 only. Zarr format 2 arrays use implicit array-to-bytes conversion. If no
serializer
is provided, a default serializer will be used. These defaults can be changed by modifying the value ofarray.v3_default_serializer
inzarr.core.config
.- fill_valueAny, optional
Fill value for the array.
- order{“C”, “F”}, optional
The memory of the array (default is “C”). For Zarr format 2, this parameter sets the memory order of the array. For Zarr format 3, this parameter is deprecated, because memory order is a runtime parameter for Zarr format 3 arrays. The recommended way to specify the memory order for Zarr format 3 arrays is via the
config
parameter, e.g.{'config': 'C'}
. If noorder
is provided, a default order will be used. This default can be changed by modifying the value ofarray.order
inzarr.core.config
.- attributesdict, optional
Attributes for the array.
- chunk_key_encodingChunkKeyEncoding, optional
A specification of how the chunk keys are represented in storage. For Zarr format 3, the default is
{"name": "default", "separator": "/"}}
. For Zarr format 2, the default is{"name": "v2", "separator": "."}}
.- dimension_namesIterable[str], optional
The names of the dimensions (default is None). Zarr format 3 only. Zarr format 2 arrays should not use this parameter.
- storage_optionsdict, optional
If using an fsspec URL to create the store, these will be passed to the backend implementation. Ignored otherwise.
- overwritebool, default False
Whether to overwrite an array with the same name in the store, if one exists.
- configArrayConfig or ArrayConfigLike, optional
Runtime configuration for the array.
- dataarray_like
The data to fill the array with.
- Returns:
- AsyncArray
- array_keys() collections.abc.Generator[str, None] [source]#
Return an iterator over group member names.
Examples
>>> import zarr >>> group = zarr.group() >>> group.create_array("subarray", shape=(10,), chunks=(10,)) >>> for name in group.array_keys(): ... print(name) subarray
- array_values() collections.abc.Generator[zarr.core.array.Array, None] [source]#
Return an iterator over group members.
Examples
>>> import zarr >>> group = zarr.group() >>> group.create_array("subarray", shape=(10,), chunks=(10,)) >>> for subarray in group.array_values(): ... print(subarray) <Array memory://140198565357056/subarray shape=(10,) dtype=float64>
- arrays() collections.abc.Generator[tuple[str, zarr.core.array.Array], None] [source]#
Return the sub-arrays of this group as a generator of (name, array) pairs
Examples
>>> import zarr >>> group = zarr.group() >>> group.create_array("subarray", shape=(10,), chunks=(10,)) >>> for name, subarray in group.arrays(): ... print(name, subarray) subarray <Array memory://140198565357056/subarray shape=(10,) dtype=float64>
- create_array(
- name: str,
- *,
- shape: zarr.core.common.ShapeLike,
- dtype: numpy.typing.DTypeLike,
- chunks: zarr.core.common.ChunkCoords | Literal['auto'] = 'auto',
- shards: zarr.core.array.ShardsLike | None = None,
- filters: zarr.core.array.FiltersLike = 'auto',
- compressors: zarr.core.array.CompressorsLike = 'auto',
- compressor: zarr.core.array.CompressorLike = 'auto',
- serializer: zarr.core.array.SerializerLike = 'auto',
- fill_value: Any | None = 0,
- order: zarr.core.common.MemoryOrder | None = 'C',
- attributes: dict[str, zarr.core.common.JSON] | None = None,
- chunk_key_encoding: zarr.core.chunk_key_encodings.ChunkKeyEncoding | zarr.core.chunk_key_encodings.ChunkKeyEncodingLike | None = None,
- dimension_names: collections.abc.Iterable[str] | None = None,
- storage_options: dict[str, Any] | None = None,
- overwrite: bool = False,
- config: zarr.core.array_spec.ArrayConfig | zarr.core.array_spec.ArrayConfigLike | None = None,
Create an array within this group.
This method lightly wraps
zarr.core.array.create_array()
.- Parameters:
- namestr
The name of the array relative to the group. If
path
isNone
, the array will be located at the root of the store.- shapeChunkCoords
Shape of the array.
- dtypenpt.DTypeLike
Data type of the array.
- chunksChunkCoords, optional
Chunk shape of the array. If not specified, default are guessed based on the shape and dtype.
- shardsChunkCoords, optional
Shard shape of the array. The default value of
None
results in no sharding at all.- filtersIterable[Codec], optional
Iterable of filters to apply to each chunk of the array, in order, before serializing that chunk to bytes.
For Zarr format 3, a “filter” is a codec that takes an array and returns an array, and these values must be instances of
ArrayArrayCodec
, or dict representations ofArrayArrayCodec
. If nofilters
are provided, a default set of filters will be used. These defaults can be changed by modifying the value ofarray.v3_default_filters
inzarr.core.config
. UseNone
to omit default filters.For Zarr format 2, a “filter” can be any numcodecs codec; you should ensure that the the order if your filters is consistent with the behavior of each filter. If no
filters
are provided, a default set of filters will be used. These defaults can be changed by modifying the value ofarray.v2_default_filters
inzarr.core.config
. UseNone
to omit default filters.- compressorsIterable[Codec], optional
List of compressors to apply to the array. Compressors are applied in order, and after any filters are applied (if any are specified) and the data is serialized into bytes.
For Zarr format 3, a “compressor” is a codec that takes a bytestream, and returns another bytestream. Multiple compressors my be provided for Zarr format 3. If no
compressors
are provided, a default set of compressors will be used. These defaults can be changed by modifying the value ofarray.v3_default_compressors
inzarr.core.config
. UseNone
to omit default compressors.For Zarr format 2, a “compressor” can be any numcodecs codec. Only a single compressor may be provided for Zarr format 2. If no
compressor
is provided, a default compressor will be used. inzarr.core.config
. UseNone
to omit the default compressor.- compressorCodec, optional
Deprecated in favor of
compressors
.- serializerdict[str, JSON] | ArrayBytesCodec, optional
Array-to-bytes codec to use for encoding the array data. Zarr format 3 only. Zarr format 2 arrays use implicit array-to-bytes conversion. If no
serializer
is provided, a default serializer will be used. These defaults can be changed by modifying the value ofarray.v3_default_serializer
inzarr.core.config
.- fill_valueAny, optional
Fill value for the array.
- order{“C”, “F”}, optional
The memory of the array (default is “C”). For Zarr format 2, this parameter sets the memory order of the array. For Zarr format 3, this parameter is deprecated, because memory order is a runtime parameter for Zarr format 3 arrays. The recommended way to specify the memory order for Zarr format 3 arrays is via the
config
parameter, e.g.{'config': 'C'}
. If noorder
is provided, a default order will be used. This default can be changed by modifying the value ofarray.order
inzarr.core.config
.- attributesdict, optional
Attributes for the array.
- chunk_key_encodingChunkKeyEncoding, optional
A specification of how the chunk keys are represented in storage. For Zarr format 3, the default is
{"name": "default", "separator": "/"}}
. For Zarr format 2, the default is{"name": "v2", "separator": "."}}
.- dimension_namesIterable[str], optional
The names of the dimensions (default is None). Zarr format 3 only. Zarr format 2 arrays should not use this parameter.
- storage_optionsdict, optional
If using an fsspec URL to create the store, these will be passed to the backend implementation. Ignored otherwise.
- overwritebool, default False
Whether to overwrite an array with the same name in the store, if one exists.
- configArrayConfig or ArrayConfigLike, optional
Runtime configuration for the array.
- Returns:
- AsyncArray
- create_dataset(name: str, **kwargs: Any) zarr.core.array.Array [source]#
Create an array.
Deprecated since version 3.0.0: The h5py compatibility methods will be removed in 3.1.0. Use Group.create_array instead.
Arrays are known as “datasets” in HDF5 terminology. For compatibility with h5py, Zarr groups also implement the
zarr.Group.require_dataset()
method.- Parameters:
- namestr
Array name.
- **kwargsdict
Additional arguments passed to
zarr.Group.create_array()
- Returns:
- aArray
- create_group(name: str, **kwargs: Any) Group [source]#
Create a sub-group.
- Parameters:
- namestr
Name of the new subgroup.
- Returns:
- Group
Examples
>>> import zarr >>> group = zarr.group() >>> subgroup = group.create_group("subgroup") >>> subgroup <Group memory://132270269438272/subgroup>
- empty(
- *,
- name: str,
- shape: zarr.core.common.ChunkCoords,
- **kwargs: Any,
Create an empty array in this Group.
- Parameters:
- namestr
Name of the array.
- shapeint or tuple of int
Shape of the empty array.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
Notes
The contents of an empty Zarr array are not defined. On attempting to retrieve data from an empty Zarr array, any values may be returned, and these are not guaranteed to be stable from one access to the next.
- empty_like(
- *,
- name: str,
- data: zarr.api.asynchronous.ArrayLike,
- **kwargs: Any,
Create an empty sub-array like data.
- Parameters:
- namestr
Name of the array.
- dataarray-like
The array to create an empty array like.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- classmethod from_store(
- store: zarr.storage.StoreLike,
- *,
- attributes: dict[str, Any] | None = None,
- zarr_format: zarr.core.common.ZarrFormat = 3,
- overwrite: bool = False,
Instantiate a group from an initialized store.
- Parameters:
- storeStoreLike
StoreLike containing the Group.
- attributesdict, optional
A dictionary of JSON-serializable values with user-defined attributes.
- zarr_format{2, 3}, optional
Zarr storage format version.
- overwritebool, optional
If True, do not raise an error if the group already exists.
- Returns:
- Group
Group instantiated from the store.
- Raises:
- ContainsArrayError, ContainsGroupError, ContainsArrayAndGroupError
- full( ) zarr.core.array.Array [source]#
Create an array, with “fill_value” being used as the default value for uninitialized portions of the array.
- Parameters:
- namestr
Name of the array.
- shapeint or tuple of int
Shape of the empty array.
- fill_valuescalar
Value to fill the array with.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- full_like(
- *,
- name: str,
- data: zarr.api.asynchronous.ArrayLike,
- **kwargs: Any,
Create a sub-array like data filled with the fill_value of data .
- Parameters:
- namestr
Name of the array.
- dataarray-like
The array to create the new array like.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- get( ) zarr.core.array.Array | Group | DefaultT | None [source]#
Obtain a group member, returning default if not found.
- Parameters:
- pathstr
Group member name.
- defaultobject
Default value to return if key is not found (default: None).
- Returns:
- object
Group member (Array or Group) or default if not found.
Examples
>>> import zarr >>> group = Group.from_store(zarr.storage.MemoryStore() >>> group.create_array(name="subarray", shape=(10,), chunks=(10,)) >>> group.create_group(name="subgroup") >>> group.get("subarray") <Array memory://132270269438272/subarray shape=(10,) dtype=float64> >>> group.get("subgroup") <Group memory://132270269438272/subgroup> >>> group.get("nonexistent", None)
- group_keys() collections.abc.Generator[str, None] [source]#
Return an iterator over group member names.
Examples
>>> import zarr >>> group = zarr.group() >>> group.create_group("subgroup") >>> for name in group.group_keys(): ... print(name) subgroup
- group_values() collections.abc.Generator[Group, None] [source]#
Return an iterator over group members.
Examples
>>> import zarr >>> group = zarr.group() >>> group.create_group("subgroup") >>> for subgroup in group.group_values(): ... print(subgroup) <Group memory://132270269438272/subgroup>
- groups() collections.abc.Generator[tuple[str, Group], None] [source]#
Return the sub-groups of this group as a generator of (name, group) pairs.
Examples
>>> import zarr >>> group = zarr.group() >>> group.create_group("subgroup") >>> for name, subgroup in group.groups(): ... print(name, subgroup) subgroup <Group memory://132270269438272/subgroup>
- info_complete() Any [source]#
Return information for a group.
If this group doesn’t contain consolidated metadata then this will need to read from the backing Store.
- Returns:
- GroupInfo
See also
- keys() collections.abc.Generator[str, None] [source]#
Return an iterator over group member names.
Examples
>>> import zarr >>> g1 = zarr.group() >>> g2 = g1.create_group('foo') >>> g3 = g1.create_group('bar') >>> d1 = g1.create_array('baz', shape=(10,), chunks=(10,)) >>> d2 = g1.create_array('quux', shape=(10,), chunks=(10,)) >>> for name in g1.keys(): ... print(name) baz bar foo quux
- members( ) tuple[tuple[str, zarr.core.array.Array | Group], Ellipsis] [source]#
Return the sub-arrays and sub-groups of this group as a tuple of (name, array | group) pairs
- move(source: str, dest: str) None [source]#
Move a sub-group or sub-array from one path to another.
Notes
Not implemented
- nmembers(max_depth: int | None = 0) int [source]#
Count the number of members in this group.
- Parameters:
- max_depthint, default 0
The maximum number of levels of the hierarchy to include. By default, (
max_depth=0
) only immediate children are included. Setmax_depth=None
to include all nodes, and some positive integer to consider children within that many levels of the root Group.
- Returns:
- countint
- ones(
- *,
- name: str,
- shape: zarr.core.common.ChunkCoords,
- **kwargs: Any,
Create an array, with one being used as the default value for uninitialized portions of the array.
- Parameters:
- namestr
Name of the array.
- shapeint or tuple of int
Shape of the empty array.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- ones_like(
- *,
- name: str,
- data: zarr.api.asynchronous.ArrayLike,
- **kwargs: Any,
Create a sub-array of ones like data.
- Parameters:
- namestr
Name of the array.
- dataarray-like
The array to create the new array like.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- classmethod open(
- store: zarr.storage.StoreLike,
- zarr_format: zarr.core.common.ZarrFormat | None = 3,
Open a group from an initialized store.
- Parameters:
- storeStoreLike
Store containing the Group.
- zarr_format{2, 3, None}, optional
Zarr storage format version.
- Returns:
- Group
Group instantiated from the store.
- require_array(
- name: str,
- *,
- shape: zarr.core.common.ShapeLike,
- **kwargs: Any,
Obtain an array, creating if it doesn’t exist.
Other kwargs are as per
zarr.Group.create_array()
.- Parameters:
- namestr
Array name.
- **kwargs
- Returns:
- aArray
- require_dataset(
- name: str,
- *,
- shape: zarr.core.common.ShapeLike,
- **kwargs: Any,
Obtain an array, creating if it doesn’t exist.
Deprecated since version 3.0.0: The h5py compatibility methods will be removed in 3.1.0. Use Group.require_array instead.
Arrays are known as “datasets” in HDF5 terminology. For compatibility with h5py, Zarr groups also implement the
zarr.Group.create_dataset()
method.Other kwargs are as per
zarr.Group.create_dataset()
.- Parameters:
- namestr
Array name.
- **kwargs
- Returns:
- aArray
- require_group(name: str, **kwargs: Any) Group [source]#
Obtain a sub-group, creating one if it doesn’t exist.
- Parameters:
- namestr
Group name.
- Returns:
- gGroup
- require_groups(*names: str) tuple[Group, Ellipsis] [source]#
Convenience method to require multiple groups in a single call.
- Parameters:
- *namesstr
Group names.
- Returns:
- groupstuple of Groups
- tree(expand: bool | None = None, level: int | None = None) Any [source]#
Return a tree-like representation of a hierarchy.
This requires the optional
rich
dependency.- Parameters:
- expandbool, optional
This keyword is not yet supported. A NotImplementedError is raised if it’s used.
- levelint, optional
The maximum depth below this Group to display in the tree.
- Returns:
- TreeRepr
A pretty-printable object displaying the hierarchy.
- update_attributes(new_attributes: dict[str, Any]) Group [source]#
Update the attributes of this group.
Examples
>>> import zarr >>> group = zarr.group() >>> group.update_attributes({"foo": "bar"}) >>> group.attrs.asdict() {'foo': 'bar'}
- async update_attributes_async(new_attributes: dict[str, Any]) Group [source]#
Update the attributes of this group.
Examples
>>> import zarr >>> group = zarr.group() >>> await group.update_attributes_async({"foo": "bar"}) >>> group.attrs.asdict() {'foo': 'bar'}
- zeros(
- *,
- name: str,
- shape: zarr.core.common.ChunkCoords,
- **kwargs: Any,
Create an array, with zero being used as the default value for uninitialized portions of the array.
- Parameters:
- namestr
Name of the array.
- shapeint or tuple of int
Shape of the empty array.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- zeros_like(
- *,
- name: str,
- data: zarr.api.asynchronous.ArrayLike,
- **kwargs: Any,
Create a sub-array of zeros like data.
- Parameters:
- namestr
Name of the array.
- dataarray-like
The array to create the new array like.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- property attrs: zarr.core.attributes.Attributes#
Attributes of this Group
- property info: Any#
Return the statically known information for a group.
- Returns:
- GroupInfo
See also
Group.info_complete
All information about a group, including dynamic information like the children members.
- property metadata: GroupMetadata#
Group metadata.
- property store: zarr.abc.store.Store#
- property store_path: zarr.storage.StorePath#
Path-like interface for the Store.
- zarr.array(data: numpy.typing.ArrayLike, **kwargs: Any) zarr.core.array.Array [source]#
Create an array filled with data.
- Parameters:
- dataarray_like
The data to fill the array with.
- **kwargs
Passed through to
create()
.
- Returns:
- arrayArray
The new array.
- zarr.consolidate_metadata(
- store: zarr.storage.StoreLike,
- path: str | None = None,
- zarr_format: zarr.core.common.ZarrFormat | None = None,
Consolidate the metadata of all nodes in a hierarchy.
Upon completion, the metadata of the root node in the Zarr hierarchy will be updated to include all the metadata of child nodes.
- Parameters:
- storeStoreLike
The store-like object whose metadata you wish to consolidate.
- pathstr, optional
A path to a group in the store to consolidate at. Only children below that group will be consolidated.
By default, the root node is used so all the metadata in the store is consolidated.
- zarr_format{2, 3, None}, optional
The zarr format of the hierarchy. By default the zarr format is inferred.
- Returns:
- group: Group
The group, with the
consolidated_metadata
field set to include the metadata of each child node.
- zarr.create(
- shape: zarr.core.common.ChunkCoords | int,
- *,
- chunks: zarr.core.common.ChunkCoords | int | bool | None = None,
- dtype: numpy.typing.DTypeLike | None = None,
- compressor: dict[str, zarr.core.common.JSON] | None = None,
- fill_value: Any | None = 0,
- order: zarr.core.common.MemoryOrder | None = None,
- store: str | zarr.storage.StoreLike | None = None,
- synchronizer: Any | None = None,
- overwrite: bool = False,
- path: zarr.api.asynchronous.PathLike | None = None,
- chunk_store: zarr.storage.StoreLike | None = None,
- filters: list[dict[str, zarr.core.common.JSON]] | None = None,
- cache_metadata: bool | None = None,
- cache_attrs: bool | None = None,
- read_only: bool | None = None,
- object_codec: zarr.abc.codec.Codec | None = None,
- dimension_separator: Literal['.', '/'] | None = None,
- write_empty_chunks: bool | None = None,
- zarr_version: zarr.core.common.ZarrFormat | None = None,
- zarr_format: zarr.core.common.ZarrFormat | None = None,
- meta_array: Any | None = None,
- attributes: dict[str, zarr.core.common.JSON] | None = None,
- chunk_shape: zarr.core.common.ChunkCoords | int | None = None,
- chunk_key_encoding: zarr.core.chunk_key_encodings.ChunkKeyEncoding | tuple[Literal['default'], Literal['.', '/']] | tuple[Literal['v2'], Literal['.', '/']] | None = None,
- codecs: collections.abc.Iterable[zarr.abc.codec.Codec | dict[str, zarr.core.common.JSON]] | None = None,
- dimension_names: collections.abc.Iterable[str] | None = None,
- storage_options: dict[str, Any] | None = None,
- config: zarr.core.array_spec.ArrayConfig | zarr.core.array_spec.ArrayConfigLike | None = None,
- **kwargs: Any,
Create an array.
- Parameters:
- shapeint or tuple of ints
Array shape.
- chunksint or tuple of ints, optional
Chunk shape. If True, will be guessed from shape and dtype. If False, will be set to shape, i.e., single chunk for the whole array. If an int, the chunk size in each dimension will be given by the value of chunks. Default is True.
- dtypestr or dtype, optional
NumPy dtype.
- compressorCodec, optional
Primary compressor.
- fill_valueobject
Default value to use for uninitialized portions of the array.
- order{‘C’, ‘F’}, optional
Deprecated in favor of the
config
keyword argument. Pass{'order': <value>}
tocreate
instead of using this parameter. Memory layout to be used within each chunk. If not specified, thearray.order
parameter in the global config will be used.- storeStore or str
Store or path to directory in file system or name of zip file.
- synchronizerobject, optional
Array synchronizer.
- overwritebool, optional
If True, delete all pre-existing data in store at path before creating the array.
- pathstr, optional
Path under which array is stored.
- chunk_storeMutableMapping, optional
Separate storage for chunks. If not provided, store will be used for storage of both chunks and metadata.
- filterssequence of Codecs, optional
Sequence of filters to use to encode chunk data prior to compression.
- cache_metadatabool, optional
If True, array configuration metadata will be cached for the lifetime of the object. If False, array metadata will be reloaded prior to all data access and modification operations (may incur overhead depending on storage and data access pattern).
- cache_attrsbool, optional
If True (default), user attributes will be cached for attribute read operations. If False, user attributes are reloaded from the store prior to all attribute read operations.
- read_onlybool, optional
True if array should be protected against modification.
- object_codecCodec, optional
A codec to encode object arrays, only needed if dtype=object.
- dimension_separator{‘.’, ‘/’}, optional
Separator placed between the dimensions of a chunk.
- write_empty_chunksbool, optional
Deprecated in favor of the
config
keyword argument. Pass{'write_empty_chunks': <value>}
tocreate
instead of using this parameter. If True, all chunks will be stored regardless of their contents. If False, each chunk is compared to the array’s fill value prior to storing. If a chunk is uniformly equal to the fill value, then that chunk is not be stored, and the store entry for that chunk’s key is deleted.- zarr_format{2, 3, None}, optional
The zarr format to use when saving.
- meta_arrayarray-like, optional
An array instance to use for determining arrays to create and return to users. Use numpy.empty(()) by default.
- storage_optionsdict
If using an fsspec URL to create the store, these will be passed to the backend implementation. Ignored otherwise.
- configArrayConfig or ArrayConfigLike, optional
Runtime configuration of the array. If provided, will override the default values from zarr.config.array.
- Returns:
- zArray
The array.
- zarr.create_array(
- store: str | zarr.storage.StoreLike,
- *,
- name: str | None = None,
- shape: zarr.core.common.ShapeLike,
- dtype: numpy.typing.DTypeLike,
- chunks: zarr.core.common.ChunkCoords | Literal['auto'] = 'auto',
- shards: zarr.core.array.ShardsLike | None = None,
- filters: zarr.core.array.FiltersLike = 'auto',
- compressors: zarr.core.array.CompressorsLike = 'auto',
- serializer: zarr.core.array.SerializerLike = 'auto',
- fill_value: Any | None = None,
- order: zarr.core.common.MemoryOrder | None = None,
- zarr_format: zarr.core.common.ZarrFormat | None = 3,
- attributes: dict[str, zarr.core.common.JSON] | None = None,
- chunk_key_encoding: zarr.core.chunk_key_encodings.ChunkKeyEncoding | zarr.core.chunk_key_encodings.ChunkKeyEncodingLike | None = None,
- dimension_names: collections.abc.Iterable[str] | None = None,
- storage_options: dict[str, Any] | None = None,
- overwrite: bool = False,
- config: zarr.core.array_spec.ArrayConfig | zarr.core.array_spec.ArrayConfigLike | None = None,
Create an array.
This function wraps
zarr.core.array.create_array()
.- Parameters:
- storestr or Store
Store or path to directory in file system or name of zip file.
- namestr or None, optional
The name of the array within the store. If
name
isNone
, the array will be located at the root of the store.- shapeChunkCoords
Shape of the array.
- dtypenpt.DTypeLike
Data type of the array.
- chunksChunkCoords, optional
Chunk shape of the array. If not specified, default are guessed based on the shape and dtype.
- shardsChunkCoords, optional
Shard shape of the array. The default value of
None
results in no sharding at all.- filtersIterable[Codec], optional
Iterable of filters to apply to each chunk of the array, in order, before serializing that chunk to bytes.
For Zarr format 3, a “filter” is a codec that takes an array and returns an array, and these values must be instances of
ArrayArrayCodec
, or dict representations ofArrayArrayCodec
. If nofilters
are provided, a default set of filters will be used. These defaults can be changed by modifying the value ofarray.v3_default_filters
inzarr.core.config
. UseNone
to omit default filters.For Zarr format 2, a “filter” can be any numcodecs codec; you should ensure that the the order if your filters is consistent with the behavior of each filter. If no
filters
are provided, a default set of filters will be used. These defaults can be changed by modifying the value ofarray.v2_default_filters
inzarr.core.config
. UseNone
to omit default filters.- compressorsIterable[Codec], optional
List of compressors to apply to the array. Compressors are applied in order, and after any filters are applied (if any are specified) and the data is serialized into bytes.
For Zarr format 3, a “compressor” is a codec that takes a bytestream, and returns another bytestream. Multiple compressors my be provided for Zarr format 3. If no
compressors
are provided, a default set of compressors will be used. These defaults can be changed by modifying the value ofarray.v3_default_compressors
inzarr.core.config
. UseNone
to omit default compressors.For Zarr format 2, a “compressor” can be any numcodecs codec. Only a single compressor may be provided for Zarr format 2. If no
compressor
is provided, a default compressor will be used. inzarr.core.config
. UseNone
to omit the default compressor.- serializerdict[str, JSON] | ArrayBytesCodec, optional
Array-to-bytes codec to use for encoding the array data. Zarr format 3 only. Zarr format 2 arrays use implicit array-to-bytes conversion. If no
serializer
is provided, a default serializer will be used. These defaults can be changed by modifying the value ofarray.v3_default_serializer
inzarr.core.config
.- fill_valueAny, optional
Fill value for the array.
- order{“C”, “F”}, optional
The memory of the array (default is “C”). For Zarr format 2, this parameter sets the memory order of the array. For Zarr format 3, this parameter is deprecated, because memory order is a runtime parameter for Zarr format 3 arrays. The recommended way to specify the memory order for Zarr format 3 arrays is via the
config
parameter, e.g.{'config': 'C'}
. If noorder
is provided, a default order will be used. This default can be changed by modifying the value ofarray.order
inzarr.core.config
.- zarr_format{2, 3}, optional
The zarr format to use when saving.
- attributesdict, optional
Attributes for the array.
- chunk_key_encodingChunkKeyEncoding, optional
A specification of how the chunk keys are represented in storage. For Zarr format 3, the default is
{"name": "default", "separator": "/"}}
. For Zarr format 2, the default is{"name": "v2", "separator": "."}}
.- dimension_namesIterable[str], optional
The names of the dimensions (default is None). Zarr format 3 only. Zarr format 2 arrays should not use this parameter.
- storage_optionsdict, optional
If using an fsspec URL to create the store, these will be passed to the backend implementation. Ignored otherwise.
- overwritebool, default False
Whether to overwrite an array with the same name in the store, if one exists.
- configArrayConfig or ArrayConfigLike, optional
Runtime configuration for the array.
- Returns:
- Array
The array.
Examples
>>> import zarr >>> store = zarr.storage.MemoryStore(mode='w') >>> arr = await zarr.create_array( >>> store=store, >>> shape=(100,100), >>> chunks=(10,10), >>> dtype='i4', >>> fill_value=0) <Array memory://140349042942400 shape=(100, 100) dtype=int32>
- zarr.create_group(
- store: zarr.storage.StoreLike,
- *,
- path: str | None = None,
- zarr_format: zarr.core.common.ZarrFormat | None = None,
- overwrite: bool = False,
- attributes: dict[str, Any] | None = None,
- storage_options: dict[str, Any] | None = None,
Create a group.
- Parameters:
- storeStore or str
Store or path to directory in file system.
- pathstr, optional
Group path within store.
- overwritebool, optional
If True, pre-existing data at
path
will be deleted before creating the group.- zarr_format{2, 3, None}, optional
The zarr format to use when saving. If no
zarr_format
is provided, the default format will be used. This default can be changed by modifying the value ofdefault_zarr_format
inzarr.core.config
.- storage_optionsdict
If using an fsspec URL to create the store, these will be passed to the backend implementation. Ignored otherwise.
- Returns:
- Group
The new group.
- zarr.empty(
- shape: zarr.core.common.ChunkCoords,
- **kwargs: Any,
Create an empty array.
- Parameters:
- shapeint or tuple of int
Shape of the empty array.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
Notes
The contents of an empty Zarr array are not defined. On attempting to retrieve data from an empty Zarr array, any values may be returned, and these are not guaranteed to be stable from one access to the next.
- zarr.empty_like(
- a: zarr.api.asynchronous.ArrayLike,
- **kwargs: Any,
Create an empty array like another array.
- Parameters:
- aarray-like
The array to create an empty array like.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- zarr.full(
- shape: zarr.core.common.ChunkCoords,
- fill_value: Any,
- **kwargs: Any,
Create an array with a default fill value.
- Parameters:
- shapeint or tuple of int
Shape of the empty array.
- fill_valuescalar
Fill value.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- zarr.full_like(
- a: zarr.api.asynchronous.ArrayLike,
- **kwargs: Any,
Create a filled array like another array.
- Parameters:
- aarray-like
The array to create an empty array like.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- zarr.group(
- store: zarr.storage.StoreLike | None = None,
- *,
- overwrite: bool = False,
- chunk_store: zarr.storage.StoreLike | None = None,
- cache_attrs: bool | None = None,
- synchronizer: Any | None = None,
- path: str | None = None,
- zarr_version: zarr.core.common.ZarrFormat | None = None,
- zarr_format: zarr.core.common.ZarrFormat | None = None,
- meta_array: Any | None = None,
- attributes: dict[str, zarr.core.common.JSON] | None = None,
- storage_options: dict[str, Any] | None = None,
Create a group.
- Parameters:
- storeStore or str, optional
Store or path to directory in file system.
- overwritebool, optional
If True, delete any pre-existing data in store at path before creating the group.
- chunk_storeStore, optional
Separate storage for chunks. If not provided, store will be used for storage of both chunks and metadata.
- cache_attrsbool, optional
If True (default), user attributes will be cached for attribute read operations. If False, user attributes are reloaded from the store prior to all attribute read operations.
- synchronizerobject, optional
Array synchronizer.
- pathstr, optional
Group path within store.
- meta_arrayarray-like, optional
An array instance to use for determining arrays to create and return to users. Use numpy.empty(()) by default.
- zarr_format{2, 3, None}, optional
The zarr format to use when saving.
- storage_optionsdict
If using an fsspec URL to create the store, these will be passed to the backend implementation. Ignored otherwise.
- Returns:
- gGroup
The new group.
- zarr.load(
- store: zarr.storage.StoreLike,
- path: str | None = None,
- zarr_format: zarr.core.common.ZarrFormat | None = None,
- zarr_version: zarr.core.common.ZarrFormat | None = None,
Load data from an array or group into memory.
- Parameters:
- storeStore or str
Store or path to directory in file system or name of zip file.
- pathstr or None, optional
The path within the store from which to load.
- Returns:
- out
If the path contains an array, out will be a numpy array. If the path contains a group, out will be a dict-like object where keys are array names and values are numpy arrays.
See also
save
,savez
Notes
If loading data from a group of arrays, data will not be immediately loaded into memory. Rather, arrays will be loaded into memory as they are requested.
- zarr.ones(
- shape: zarr.core.common.ChunkCoords,
- **kwargs: Any,
Create an array with a fill value of one.
- Parameters:
- shapeint or tuple of int
Shape of the empty array.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- zarr.ones_like(
- a: zarr.api.asynchronous.ArrayLike,
- **kwargs: Any,
Create an array of ones like another array.
- Parameters:
- aarray-like
The array to create an empty array like.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- zarr.open(
- store: zarr.storage.StoreLike | None = None,
- *,
- mode: zarr.core.common.AccessModeLiteral = 'a',
- zarr_version: zarr.core.common.ZarrFormat | None = None,
- zarr_format: zarr.core.common.ZarrFormat | None = None,
- path: str | None = None,
- storage_options: dict[str, Any] | None = None,
- **kwargs: Any,
Open a group or array using file-mode-like semantics.
- Parameters:
- storeStore or str, optional
Store or path to directory in file system or name of zip file.
- mode{‘r’, ‘r+’, ‘a’, ‘w’, ‘w-‘}, optional
Persistence mode: ‘r’ means read only (must exist); ‘r+’ means read/write (must exist); ‘a’ means read/write (create if doesn’t exist); ‘w’ means create (overwrite if exists); ‘w-’ means create (fail if exists).
- zarr_format{2, 3, None}, optional
The zarr format to use when saving.
- pathstr or None, optional
The path within the store to open.
- storage_optionsdict
If using an fsspec URL to create the store, these will be passed to the backend implementation. Ignored otherwise.
- **kwargs
Additional parameters are passed through to
zarr.api.asynchronous.open_array()
orzarr.api.asynchronous.open_group()
.
- Returns:
- zarray or group
Return type depends on what exists in the given store.
- zarr.open_array(
- store: zarr.storage.StoreLike | None = None,
- *,
- zarr_version: zarr.core.common.ZarrFormat | None = None,
- path: zarr.api.asynchronous.PathLike = '',
- storage_options: dict[str, Any] | None = None,
- **kwargs: Any,
Open an array using file-mode-like semantics.
- Parameters:
- storeStore or str
Store or path to directory in file system or name of zip file.
- zarr_version{2, 3, None}, optional
The zarr format to use when saving.
- pathstr, optional
Path in store to array.
- storage_optionsdict
If using an fsspec URL to create the store, these will be passed to the backend implementation. Ignored otherwise.
- **kwargs
Any keyword arguments to pass to
create
.
- Returns:
- AsyncArray
The opened array.
- zarr.open_consolidated(
- *args: Any,
- use_consolidated: Literal[True] = True,
- **kwargs: Any,
Alias for
open_group()
withuse_consolidated=True
.
- zarr.open_group(
- store: zarr.storage.StoreLike | None = None,
- *,
- mode: zarr.core.common.AccessModeLiteral = 'a',
- cache_attrs: bool | None = None,
- synchronizer: Any = None,
- path: str | None = None,
- chunk_store: zarr.storage.StoreLike | None = None,
- storage_options: dict[str, Any] | None = None,
- zarr_version: zarr.core.common.ZarrFormat | None = None,
- zarr_format: zarr.core.common.ZarrFormat | None = None,
- meta_array: Any | None = None,
- attributes: dict[str, zarr.core.common.JSON] | None = None,
- use_consolidated: bool | str | None = None,
Open a group using file-mode-like semantics.
- Parameters:
- storeStore, str, or mapping, optional
Store or path to directory in file system or name of zip file.
Strings are interpreted as paths on the local file system and used as the
root
argument tozarr.storage.LocalStore
.Dictionaries are used as the
store_dict
argument inzarr.storage.MemoryStore`
.By default (
store=None
) a newzarr.storage.MemoryStore
is created.- mode{‘r’, ‘r+’, ‘a’, ‘w’, ‘w-‘}, optional
Persistence mode: ‘r’ means read only (must exist); ‘r+’ means read/write (must exist); ‘a’ means read/write (create if doesn’t exist); ‘w’ means create (overwrite if exists); ‘w-’ means create (fail if exists).
- cache_attrsbool, optional
If True (default), user attributes will be cached for attribute read operations. If False, user attributes are reloaded from the store prior to all attribute read operations.
- synchronizerobject, optional
Array synchronizer.
- pathstr, optional
Group path within store.
- chunk_storeStore or str, optional
Store or path to directory in file system or name of zip file.
- storage_optionsdict
If using an fsspec URL to create the store, these will be passed to the backend implementation. Ignored otherwise.
- meta_arrayarray-like, optional
An array instance to use for determining arrays to create and return to users. Use numpy.empty(()) by default.
- attributesdict
A dictionary of JSON-serializable values with user-defined attributes.
- use_consolidatedbool or str, default None
Whether to use consolidated metadata.
By default, consolidated metadata is used if it’s present in the store (in the
zarr.json
for Zarr format 3 and in the.zmetadata
file for Zarr format 2).To explicitly require consolidated metadata, set
use_consolidated=True
, which will raise an exception if consolidated metadata is not found.To explicitly not use consolidated metadata, set
use_consolidated=False
, which will fall back to using the regular, non consolidated metadata.Zarr format 2 allows configuring the key storing the consolidated metadata (
.zmetadata
by default). Specify the custom key asuse_consolidated
to load consolidated metadata from a non-default key.
- Returns:
- gGroup
The new group.
- zarr.open_like(
- a: zarr.api.asynchronous.ArrayLike,
- path: str,
- **kwargs: Any,
Open a persistent array like another array.
- Parameters:
- aArray
The shape and data-type of a define these same attributes of the returned array.
- pathstr
The path to the new array.
- **kwargs
Any keyword arguments to pass to the array constructor.
- Returns:
- AsyncArray
The opened array.
- zarr.save(
- store: zarr.storage.StoreLike,
- *args: zarr.core.buffer.NDArrayLike,
- zarr_version: zarr.core.common.ZarrFormat | None = None,
- zarr_format: zarr.core.common.ZarrFormat | None = None,
- path: str | None = None,
- **kwargs: Any,
Save an array or group of arrays to the local file system.
- Parameters:
- storeStore or str
Store or path to directory in file system or name of zip file.
- *argsndarray
NumPy arrays with data to save.
- zarr_format{2, 3, None}, optional
The zarr format to use when saving.
- pathstr or None, optional
The path within the group where the arrays will be saved.
- **kwargs
NumPy arrays with data to save.
- zarr.save_array(
- store: zarr.storage.StoreLike,
- arr: zarr.core.buffer.NDArrayLike,
- *,
- zarr_version: zarr.core.common.ZarrFormat | None = None,
- zarr_format: zarr.core.common.ZarrFormat | None = None,
- path: str | None = None,
- storage_options: dict[str, Any] | None = None,
- **kwargs: Any,
Save a NumPy array to the local file system.
Follows a similar API to the NumPy save() function.
- Parameters:
- storeStore or str
Store or path to directory in file system or name of zip file.
- arrndarray
NumPy array with data to save.
- zarr_format{2, 3, None}, optional
The zarr format to use when saving.
- pathstr or None, optional
The path within the store where the array will be saved.
- storage_optionsdict
If using an fsspec URL to create the store, these will be passed to the backend implementation. Ignored otherwise.
- **kwargs
Passed through to
create()
, e.g., compressor.
- zarr.save_group(
- store: zarr.storage.StoreLike,
- *args: zarr.core.buffer.NDArrayLike,
- zarr_version: zarr.core.common.ZarrFormat | None = None,
- zarr_format: zarr.core.common.ZarrFormat | None = None,
- path: str | None = None,
- storage_options: dict[str, Any] | None = None,
- **kwargs: zarr.core.buffer.NDArrayLike,
Save several NumPy arrays to the local file system.
Follows a similar API to the NumPy savez()/savez_compressed() functions.
- Parameters:
- storeStore or str
Store or path to directory in file system or name of zip file.
- *argsndarray
NumPy arrays with data to save.
- zarr_format{2, 3, None}, optional
The zarr format to use when saving.
- pathstr or None, optional
Path within the store where the group will be saved.
- storage_optionsdict
If using an fsspec URL to create the store, these will be passed to the backend implementation. Ignored otherwise.
- **kwargs
NumPy arrays with data to save.
- zarr.tree( ) Any [source]#
Provide a rich display of the hierarchy.
Deprecated since version 3.0.0: zarr.tree() is deprecated and will be removed in a future release. Use group.tree() instead.
- Parameters:
- grpGroup
Zarr or h5py group.
- expandbool, optional
Only relevant for HTML representation. If True, tree will be fully expanded.
- levelint, optional
Maximum depth to descend into hierarchy.
- Returns:
- TreeRepr
A pretty-printable object displaying the hierarchy.
- zarr.zeros(
- shape: zarr.core.common.ChunkCoords,
- **kwargs: Any,
Create an array with a fill value of zero.
- Parameters:
- shapeint or tuple of int
Shape of the empty array.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- zarr.zeros_like(
- a: zarr.api.asynchronous.ArrayLike,
- **kwargs: Any,
Create an array of zeros like another array.
- Parameters:
- aarray-like
The array to create an empty array like.
- **kwargs
Keyword arguments passed to
zarr.api.asynchronous.create()
.
- Returns:
- Array
The new array.
- zarr.config#