Source code for zarr.convenience

"""Convenience functions for storing and loading data."""

import itertools
import os
import re
from collections.abc import Mapping, MutableMapping

from zarr._storage.store import data_root, meta_root, assert_zarr_v3_api_available
from zarr.core import Array
from zarr.creation import array as _create_array
from zarr.creation import open_array
from zarr.errors import CopyError, PathNotFoundError
from zarr.hierarchy import Group
from zarr.hierarchy import group as _create_group
from zarr.hierarchy import open_group
from zarr.meta import json_dumps, json_loads
from zarr.storage import (
    _get_metadata_suffix,
    contains_array,
    contains_group,
    normalize_store_arg,
    BaseStore,
    ConsolidatedMetadataStore,
)
from zarr._storage.v3 import ConsolidatedMetadataStoreV3
from zarr.util import TreeViewer, buffer_size, normalize_storage_path

from typing import Union

StoreLike = Union[BaseStore, MutableMapping, str, None]

_builtin_open = open  # builtin open is later shadowed by a local open function


def _check_and_update_path(store: BaseStore, path):
    if getattr(store, "_store_version", 2) > 2 and not path:
        raise ValueError("path must be provided for v3 stores")
    return normalize_storage_path(path)


# noinspection PyShadowingBuiltins
[docs] def open(store: StoreLike = None, mode: str = "a", *, zarr_version=None, path=None, **kwargs): """Convenience function to open a group or array using file-mode-like semantics. Parameters ---------- store : Store or string, optional Store or path to directory in file system or name of zip file. mode : {'r', 'r+', 'a', 'w', 'w-'}, optional Persistence mode: 'r' means read only (must exist); 'r+' means read/write (must exist); 'a' means read/write (create if doesn't exist); 'w' means create (overwrite if exists); 'w-' means create (fail if exists). zarr_version : {2, 3, None}, optional The zarr protocol version to use. The default value of None will attempt to infer the version from `store` if possible, otherwise it will fall back to 2. .. warning:: `zarr_version=3` is currently using the experimental Zarr V3 implementation. This implementation is not in sync with the final specification and will be replaced with a spec compliant version in the version 3.0. path : str or None, optional The path within the store to open. **kwargs Additional parameters are passed through to :func:`zarr.creation.open_array` or :func:`zarr.hierarchy.open_group`. Returns ------- z : :class:`zarr.core.Array` or :class:`zarr.hierarchy.Group` Array or group, depending on what exists in the given store. See Also -------- zarr.creation.open_array, zarr.hierarchy.open_group Examples -------- Storing data in a directory 'data/example.zarr' on the local file system:: >>> import zarr >>> store = 'data/example.zarr' >>> zw = zarr.open(store, mode='w', shape=100, dtype='i4') # open new array >>> zw <zarr.core.Array (100,) int32> >>> za = zarr.open(store, mode='a') # open existing array for reading and writing >>> za <zarr.core.Array (100,) int32> >>> zr = zarr.open(store, mode='r') # open existing array read-only >>> zr <zarr.core.Array (100,) int32 read-only> >>> gw = zarr.open(store, mode='w') # open new group, overwriting previous data >>> gw <zarr.hierarchy.Group '/'> >>> ga = zarr.open(store, mode='a') # open existing group for reading and writing >>> ga <zarr.hierarchy.Group '/'> >>> gr = zarr.open(store, mode='r') # open existing group read-only >>> gr <zarr.hierarchy.Group '/' read-only> """ # handle polymorphic store arg # we pass storage options explicitly, since normalize_store_arg might construct # a store if the input is a fsspec-compatible URL _store: BaseStore = normalize_store_arg( store, storage_options=kwargs.pop("storage_options", {}), mode=mode, zarr_version=zarr_version, ) # path = _check_and_update_path(_store, path) path = normalize_storage_path(path) kwargs["path"] = path if mode in {"w", "w-", "x"}: if "shape" in kwargs: return open_array(_store, mode=mode, **kwargs) else: return open_group(_store, mode=mode, **kwargs) elif mode == "a": if "shape" in kwargs or contains_array(_store, path): return open_array(_store, mode=mode, **kwargs) else: return open_group(_store, mode=mode, **kwargs) else: if contains_array(_store, path): return open_array(_store, mode=mode, **kwargs) elif contains_group(_store, path): return open_group(_store, mode=mode, **kwargs) else: raise PathNotFoundError(path)
def _might_close(path): return isinstance(path, (str, os.PathLike))
[docs] def save_array(store: StoreLike, arr, *, zarr_version=None, path=None, **kwargs): """Convenience function to save a NumPy array to the local file system, following a similar API to the NumPy save() function. Parameters ---------- store : MutableMapping or string Store or path to directory in file system or name of zip file. arr : ndarray NumPy array with data to save. zarr_version : {2, 3, None}, optional The zarr protocol version to use when saving. The default value of None will attempt to infer the version from `store` if possible, otherwise it will fall back to 2. .. warning:: `zarr_version=3` is currently using the experimental Zarr V3 implementation. This implementation is not in sync with the final specification and will be replaced with a spec compliant version in the version 3.0. path : str or None, optional The path within the store where the array will be saved. kwargs Passed through to :func:`create`, e.g., compressor. Examples -------- Save an array to a directory on the file system (uses a :class:`DirectoryStore`):: >>> import zarr >>> import numpy as np >>> arr = np.arange(10000) >>> zarr.save_array('data/example.zarr', arr) >>> zarr.load('data/example.zarr') array([ 0, 1, 2, ..., 9997, 9998, 9999]) Save an array to a single file (uses a :class:`ZipStore`):: >>> zarr.save_array('data/example.zip', arr) >>> zarr.load('data/example.zip') array([ 0, 1, 2, ..., 9997, 9998, 9999]) """ may_need_closing = _might_close(store) _store: BaseStore = normalize_store_arg(store, mode="w", zarr_version=zarr_version) path = _check_and_update_path(_store, path) try: _create_array( arr, store=_store, overwrite=True, zarr_version=zarr_version, path=path, **kwargs ) finally: if may_need_closing: # needed to ensure zip file records are written _store.close()
[docs] def save_group(store: StoreLike, *args, zarr_version=None, path=None, **kwargs): """Convenience function to save several NumPy arrays to the local file system, following a similar API to the NumPy savez()/savez_compressed() functions. Parameters ---------- store : MutableMapping or string Store or path to directory in file system or name of zip file. args : ndarray NumPy arrays with data to save. zarr_version : {2, 3, None}, optional The zarr protocol version to use when saving. The default value of None will attempt to infer the version from `store` if possible, otherwise it will fall back to 2. .. warning:: `zarr_version=3` is currently using the experimental Zarr V3 implementation. This implementation is not in sync with the final specification and will be replaced with a spec compliant version in the version 3.0. path : str or None, optional Path within the store where the group will be saved. kwargs NumPy arrays with data to save. Examples -------- Save several arrays to a directory on the file system (uses a :class:`DirectoryStore`): >>> import zarr >>> import numpy as np >>> a1 = np.arange(10000) >>> a2 = np.arange(10000, 0, -1) >>> zarr.save_group('data/example.zarr', a1, a2) >>> loader = zarr.load('data/example.zarr') >>> loader <LazyLoader: arr_0, arr_1> >>> loader['arr_0'] array([ 0, 1, 2, ..., 9997, 9998, 9999]) >>> loader['arr_1'] array([10000, 9999, 9998, ..., 3, 2, 1]) Save several arrays using named keyword arguments:: >>> zarr.save_group('data/example.zarr', foo=a1, bar=a2) >>> loader = zarr.load('data/example.zarr') >>> loader <LazyLoader: bar, foo> >>> loader['foo'] array([ 0, 1, 2, ..., 9997, 9998, 9999]) >>> loader['bar'] array([10000, 9999, 9998, ..., 3, 2, 1]) Store several arrays in a single zip file (uses a :class:`ZipStore`):: >>> zarr.save_group('data/example.zip', foo=a1, bar=a2) >>> loader = zarr.load('data/example.zip') >>> loader <LazyLoader: bar, foo> >>> loader['foo'] array([ 0, 1, 2, ..., 9997, 9998, 9999]) >>> loader['bar'] array([10000, 9999, 9998, ..., 3, 2, 1]) Notes ----- Default compression options will be used. """ if len(args) == 0 and len(kwargs) == 0: raise ValueError("at least one array must be provided") # handle polymorphic store arg may_need_closing = _might_close(store) _store: BaseStore = normalize_store_arg(store, mode="w", zarr_version=zarr_version) path = _check_and_update_path(_store, path) try: grp = _create_group(_store, path=path, overwrite=True, zarr_version=zarr_version) for i, arr in enumerate(args): k = f"arr_{i}" grp.create_dataset(k, data=arr, overwrite=True, zarr_version=zarr_version) for k, arr in kwargs.items(): grp.create_dataset(k, data=arr, overwrite=True, zarr_version=zarr_version) finally: if may_need_closing: # needed to ensure zip file records are written _store.close()
[docs] def save(store: StoreLike, *args, zarr_version=None, path=None, **kwargs): """Convenience function to save an array or group of arrays to the local file system. Parameters ---------- store : MutableMapping or string Store or path to directory in file system or name of zip file. args : ndarray NumPy arrays with data to save. zarr_version : {2, 3, None}, optional The zarr protocol version to use when saving. The default value of None will attempt to infer the version from `store` if possible, otherwise it will fall back to 2. .. warning:: `zarr_version=3` is currently using the experimental Zarr V3 implementation. This implementation is not in sync with the final specification and will be replaced with a spec compliant version in the version 3.0. path : str or None, optional The path within the group where the arrays will be saved. kwargs NumPy arrays with data to save. Examples -------- Save an array to a directory on the file system (uses a :class:`DirectoryStore`):: >>> import zarr >>> import numpy as np >>> arr = np.arange(10000) >>> zarr.save('data/example.zarr', arr) >>> zarr.load('data/example.zarr') array([ 0, 1, 2, ..., 9997, 9998, 9999]) Save an array to a Zip file (uses a :class:`ZipStore`):: >>> zarr.save('data/example.zip', arr) >>> zarr.load('data/example.zip') array([ 0, 1, 2, ..., 9997, 9998, 9999]) Save several arrays to a directory on the file system (uses a :class:`DirectoryStore` and stores arrays in a group):: >>> import zarr >>> import numpy as np >>> a1 = np.arange(10000) >>> a2 = np.arange(10000, 0, -1) >>> zarr.save('data/example.zarr', a1, a2) >>> loader = zarr.load('data/example.zarr') >>> loader <LazyLoader: arr_0, arr_1> >>> loader['arr_0'] array([ 0, 1, 2, ..., 9997, 9998, 9999]) >>> loader['arr_1'] array([10000, 9999, 9998, ..., 3, 2, 1]) Save several arrays using named keyword arguments:: >>> zarr.save('data/example.zarr', foo=a1, bar=a2) >>> loader = zarr.load('data/example.zarr') >>> loader <LazyLoader: bar, foo> >>> loader['foo'] array([ 0, 1, 2, ..., 9997, 9998, 9999]) >>> loader['bar'] array([10000, 9999, 9998, ..., 3, 2, 1]) Store several arrays in a single zip file (uses a :class:`ZipStore`):: >>> zarr.save('data/example.zip', foo=a1, bar=a2) >>> loader = zarr.load('data/example.zip') >>> loader <LazyLoader: bar, foo> >>> loader['foo'] array([ 0, 1, 2, ..., 9997, 9998, 9999]) >>> loader['bar'] array([10000, 9999, 9998, ..., 3, 2, 1]) See Also -------- save_array, save_group """ if len(args) == 0 and len(kwargs) == 0: raise ValueError("at least one array must be provided") if len(args) == 1 and len(kwargs) == 0: save_array(store, args[0], zarr_version=zarr_version, path=path) else: save_group(store, *args, zarr_version=zarr_version, path=path, **kwargs)
class LazyLoader(Mapping): def __init__(self, grp): self.grp = grp self.cache = dict() def __getitem__(self, item): try: return self.cache[item] except KeyError: arr = self.grp[item][...] self.cache[item] = arr return arr def __len__(self): return len(self.grp) def __iter__(self): return iter(self.grp) def __contains__(self, item): return item in self.grp def __repr__(self): r = "<LazyLoader: " r += ", ".join(sorted(self.grp.array_keys())) r += ">" return r
[docs] def load(store: StoreLike, zarr_version=None, path=None): """Load data from an array or group into memory. Parameters ---------- store : MutableMapping or string Store or path to directory in file system or name of zip file. zarr_version : {2, 3, None}, optional The zarr protocol version to use when loading. The default value of None will attempt to infer the version from `store` if possible, otherwise it will fall back to 2. .. warning:: `zarr_version=3` is currently using the experimental Zarr V3 implementation. This implementation is not in sync with the final specification and will be replaced with a spec compliant version in the version 3.0. path : str or None, optional The path within the store from which to load. Returns ------- out If the store contains an array, out will be a numpy array. If the store contains a group, out will be a dict-like object where keys are array names and values are numpy arrays. See Also -------- save, savez Notes ----- If loading data from a group of arrays, data will not be immediately loaded into memory. Rather, arrays will be loaded into memory as they are requested. """ # handle polymorphic store arg _store = normalize_store_arg(store, zarr_version=zarr_version) path = _check_and_update_path(_store, path) if contains_array(_store, path=path): return Array(store=_store, path=path)[...] elif contains_group(_store, path=path): grp = Group(store=_store, path=path) return LazyLoader(grp)
[docs] def tree(grp, expand=False, level=None): """Provide a ``print``-able display of the hierarchy. This function is provided mainly as a convenience for obtaining a tree view of an h5py group - zarr groups have a ``.tree()`` method. Parameters ---------- grp : Group Zarr or h5py group. expand : bool, optional Only relevant for HTML representation. If True, tree will be fully expanded. level : int, optional Maximum depth to descend into hierarchy. Examples -------- >>> import zarr >>> g1 = zarr.group() >>> g2 = g1.create_group('foo') >>> g3 = g1.create_group('bar') >>> g4 = g3.create_group('baz') >>> g5 = g3.create_group('qux') >>> d1 = g5.create_dataset('baz', shape=100, chunks=10) >>> g1.tree() / ├── bar │ ├── baz │ └── qux │ └── baz (100,) float64 └── foo >>> import h5py >>> h5f = h5py.File('data/example.h5', mode='w') >>> zarr.copy_all(g1, h5f) (5, 0, 800) >>> zarr.tree(h5f) / ├── bar │ ├── baz │ └── qux │ └── baz (100,) float64 └── foo See Also -------- zarr.hierarchy.Group.tree Notes ----- Please note that this is an experimental feature. The behaviour of this function is still evolving and the default output and/or parameters may change in future versions. """ return TreeViewer(grp, expand=expand, level=level)
class _LogWriter: def __init__(self, log): self.log_func = None self.log_file = None self.needs_closing = False if log is None: # don't do any logging pass elif callable(log): self.log_func = log elif isinstance(log, str): self.log_file = _builtin_open(log, mode="w") self.needs_closing = True elif hasattr(log, "write"): self.log_file = log else: raise TypeError( f"log must be a callable function, file path or file-like object, found {log!r}" ) def __enter__(self): return self def __exit__(self, *args): if self.log_file is not None and self.needs_closing: self.log_file.close() def __call__(self, *args, **kwargs): if self.log_file is not None: kwargs["file"] = self.log_file print(*args, **kwargs) if hasattr(self.log_file, "flush"): # get immediate feedback self.log_file.flush() elif self.log_func is not None: self.log_func(*args, **kwargs) def _log_copy_summary(log, dry_run, n_copied, n_skipped, n_bytes_copied): # log a final message with a summary of what happened if dry_run: message = "dry run: " else: message = "all done: " message += f"{n_copied:,} copied, {n_skipped:,} skipped" if not dry_run: message += f", {n_bytes_copied:,} bytes copied" log(message)
[docs] def copy_store( source, dest, source_path="", dest_path="", excludes=None, includes=None, flags=0, if_exists="raise", dry_run=False, log=None, ): """Copy data directly from the `source` store to the `dest` store. Use this function when you want to copy a group or array in the most efficient way, preserving all configuration and attributes. This function is more efficient than the copy() or copy_all() functions because it avoids de-compressing and re-compressing data, rather the compressed chunk data for each array are copied directly between stores. Parameters ---------- source : Mapping Store to copy data from. dest : MutableMapping Store to copy data into. source_path : str, optional Only copy data from under this path in the source store. dest_path : str, optional Copy data into this path in the destination store. excludes : sequence of str, optional One or more regular expressions which will be matched against keys in the source store. Any matching key will not be copied. includes : sequence of str, optional One or more regular expressions which will be matched against keys in the source store and will override any excludes also matching. flags : int, optional Regular expression flags used for matching excludes and includes. if_exists : {'raise', 'replace', 'skip'}, optional How to handle keys that already exist in the destination store. If 'raise' then a CopyError is raised on the first key already present in the destination store. If 'replace' then any data will be replaced in the destination. If 'skip' then any existing keys will not be copied. dry_run : bool, optional If True, don't actually copy anything, just log what would have happened. log : callable, file path or file-like object, optional If provided, will be used to log progress information. Returns ------- n_copied : int Number of items copied. n_skipped : int Number of items skipped. n_bytes_copied : int Number of bytes of data that were actually copied. Examples -------- >>> import zarr >>> store1 = zarr.DirectoryStore('data/example.zarr') >>> root = zarr.group(store1, overwrite=True) >>> foo = root.create_group('foo') >>> bar = foo.create_group('bar') >>> baz = bar.create_dataset('baz', shape=100, chunks=50, dtype='i8') >>> import numpy as np >>> baz[:] = np.arange(100) >>> root.tree() / └── foo └── bar └── baz (100,) int64 >>> from sys import stdout >>> store2 = zarr.ZipStore('data/example.zip', mode='w') >>> zarr.copy_store(store1, store2, log=stdout) copy .zgroup copy foo/.zgroup copy foo/bar/.zgroup copy foo/bar/baz/.zarray copy foo/bar/baz/0 copy foo/bar/baz/1 all done: 6 copied, 0 skipped, 566 bytes copied (6, 0, 566) >>> new_root = zarr.group(store2) >>> new_root.tree() / └── foo └── bar └── baz (100,) int64 >>> new_root['foo/bar/baz'][:] array([ 0, 1, 2, ..., 97, 98, 99]) >>> store2.close() # zip stores need to be closed Notes ----- Please note that this is an experimental feature. The behaviour of this function is still evolving and the default behaviour and/or parameters may change in future versions. """ # normalize paths source_path = normalize_storage_path(source_path) dest_path = normalize_storage_path(dest_path) if source_path: source_path = source_path + "/" if dest_path: dest_path = dest_path + "/" # normalize excludes and includes if excludes is None: excludes = [] elif isinstance(excludes, str): excludes = [excludes] if includes is None: includes = [] elif isinstance(includes, str): includes = [includes] excludes = [re.compile(e, flags) for e in excludes] includes = [re.compile(i, flags) for i in includes] # check if_exists parameter valid_if_exists = ["raise", "replace", "skip"] if if_exists not in valid_if_exists: raise ValueError(f"if_exists must be one of {valid_if_exists!r}; found {if_exists!r}") # setup counting variables n_copied = n_skipped = n_bytes_copied = 0 source_store_version = getattr(source, "_store_version", 2) dest_store_version = getattr(dest, "_store_version", 2) if source_store_version != dest_store_version: raise ValueError("zarr stores must share the same protocol version") if source_store_version > 2: nchar_root = len(meta_root) # code below assumes len(meta_root) === len(data_root) assert len(data_root) == nchar_root # setup logging with _LogWriter(log) as log: # iterate over source keys for source_key in sorted(source.keys()): # filter to keys under source path if source_store_version == 2: if not source_key.startswith(source_path): continue elif source_store_version == 3: # skip 'meta/root/' or 'data/root/' at start of source_key if not source_key[nchar_root:].startswith(source_path): continue # process excludes and includes exclude = False for prog in excludes: if prog.search(source_key): exclude = True break if exclude: for prog in includes: if prog.search(source_key): exclude = False break if exclude: continue # map key to destination path if source_store_version == 2: key_suffix = source_key[len(source_path) :] dest_key = dest_path + key_suffix elif source_store_version == 3: # nchar_root is length of 'meta/root/' or 'data/root/' key_suffix = source_key[nchar_root + len(source_path) :] dest_key = source_key[:nchar_root] + dest_path + key_suffix # create a descriptive label for this operation descr = source_key if dest_key != source_key: descr = descr + " -> " + dest_key # decide what to do do_copy = True if if_exists != "replace": if dest_key in dest: if if_exists == "raise": raise CopyError(f"key {dest_key!r} exists in destination") elif if_exists == "skip": do_copy = False # take action if do_copy: log(f"copy {descr}") if not dry_run: data = source[source_key] n_bytes_copied += buffer_size(data) dest[dest_key] = data n_copied += 1 else: log(f"skip {descr}") n_skipped += 1 # log a final message with a summary of what happened _log_copy_summary(log, dry_run, n_copied, n_skipped, n_bytes_copied) return n_copied, n_skipped, n_bytes_copied
def _check_dest_is_group(dest): if not hasattr(dest, "create_dataset"): raise ValueError(f"dest must be a group, got {dest!r}")
[docs] def copy( source, dest, name=None, shallow=False, without_attrs=False, log=None, if_exists="raise", dry_run=False, **create_kws, ): """Copy the `source` array or group into the `dest` group. Parameters ---------- source : group or array/dataset A zarr group or array, or an h5py group or dataset. dest : group A zarr or h5py group. name : str, optional Name to copy the object to. shallow : bool, optional If True, only copy immediate children of `source`. without_attrs : bool, optional Do not copy user attributes. log : callable, file path or file-like object, optional If provided, will be used to log progress information. if_exists : {'raise', 'replace', 'skip', 'skip_initialized'}, optional How to handle arrays that already exist in the destination group. If 'raise' then a CopyError is raised on the first array already present in the destination group. If 'replace' then any array will be replaced in the destination. If 'skip' then any existing arrays will not be copied. If 'skip_initialized' then any existing arrays with all chunks initialized will not be copied (not available when copying to h5py). dry_run : bool, optional If True, don't actually copy anything, just log what would have happened. **create_kws Passed through to the create_dataset method when copying an array/dataset. Returns ------- n_copied : int Number of items copied. n_skipped : int Number of items skipped. n_bytes_copied : int Number of bytes of data that were actually copied. Examples -------- Here's an example of copying a group named 'foo' from an HDF5 file to a Zarr group:: >>> import h5py >>> import zarr >>> import numpy as np >>> source = h5py.File('data/example.h5', mode='w') >>> foo = source.create_group('foo') >>> baz = foo.create_dataset('bar/baz', data=np.arange(100), chunks=(50,)) >>> spam = source.create_dataset('spam', data=np.arange(100, 200), chunks=(30,)) >>> zarr.tree(source) / ├── foo │ └── bar │ └── baz (100,) int64 └── spam (100,) int64 >>> dest = zarr.group() >>> from sys import stdout >>> zarr.copy(source['foo'], dest, log=stdout) copy /foo copy /foo/bar copy /foo/bar/baz (100,) int64 all done: 3 copied, 0 skipped, 800 bytes copied (3, 0, 800) >>> dest.tree() # N.B., no spam / └── foo └── bar └── baz (100,) int64 >>> source.close() The ``if_exists`` parameter provides options for how to handle pre-existing data in the destination. Here are some examples of these options, also using ``dry_run=True`` to find out what would happen without actually copying anything:: >>> source = zarr.group() >>> dest = zarr.group() >>> baz = source.create_dataset('foo/bar/baz', data=np.arange(100)) >>> spam = source.create_dataset('foo/spam', data=np.arange(1000)) >>> existing_spam = dest.create_dataset('foo/spam', data=np.arange(1000)) >>> from sys import stdout >>> try: ... zarr.copy(source['foo'], dest, log=stdout, dry_run=True) ... except zarr.CopyError as e: ... print(e) ... copy /foo copy /foo/bar copy /foo/bar/baz (100,) int64 an object 'spam' already exists in destination '/foo' >>> zarr.copy(source['foo'], dest, log=stdout, if_exists='replace', dry_run=True) copy /foo copy /foo/bar copy /foo/bar/baz (100,) int64 copy /foo/spam (1000,) int64 dry run: 4 copied, 0 skipped (4, 0, 0) >>> zarr.copy(source['foo'], dest, log=stdout, if_exists='skip', dry_run=True) copy /foo copy /foo/bar copy /foo/bar/baz (100,) int64 skip /foo/spam (1000,) int64 dry run: 3 copied, 1 skipped (3, 1, 0) Notes ----- Please note that this is an experimental feature. The behaviour of this function is still evolving and the default behaviour and/or parameters may change in future versions. """ # value checks _check_dest_is_group(dest) # setup logging with _LogWriter(log) as log: # do the copying n_copied, n_skipped, n_bytes_copied = _copy( log, source, dest, name=name, root=True, shallow=shallow, without_attrs=without_attrs, if_exists=if_exists, dry_run=dry_run, **create_kws, ) # log a final message with a summary of what happened _log_copy_summary(log, dry_run, n_copied, n_skipped, n_bytes_copied) return n_copied, n_skipped, n_bytes_copied
def _copy(log, source, dest, name, root, shallow, without_attrs, if_exists, dry_run, **create_kws): # N.B., if this is a dry run, dest may be None # setup counting variables n_copied = n_skipped = n_bytes_copied = 0 # are we copying to/from h5py? source_h5py = source.__module__.startswith("h5py.") dest_h5py = dest is not None and dest.__module__.startswith("h5py.") # check if_exists parameter valid_if_exists = ["raise", "replace", "skip", "skip_initialized"] if if_exists not in valid_if_exists: raise ValueError(f"if_exists must be one of {valid_if_exists!r}; found {if_exists!r}") if dest_h5py and if_exists == "skip_initialized": raise ValueError(f"{if_exists!r} can only be used when copying to zarr") # determine name to copy to if name is None: name = source.name.split("/")[-1] if not name: # this can happen if source is the root group raise TypeError( "source has no name, please provide the `name` " "parameter to indicate a name to copy to" ) if hasattr(source, "shape"): # copy a dataset/array # check if already exists, decide what to do do_copy = True exists = dest is not None and name in dest if exists: if if_exists == "raise": raise CopyError(f"an object {name!r} already exists in destination {dest.name!r}") elif if_exists == "skip": do_copy = False elif if_exists == "skip_initialized": ds = dest[name] if ds.nchunks_initialized == ds.nchunks: do_copy = False # take action if do_copy: # log a message about what we're going to do log(f"copy {source.name} {source.shape} {source.dtype}") if not dry_run: # clear the way if exists: del dest[name] # setup creation keyword arguments kws = create_kws.copy() # setup chunks option, preserve by default kws.setdefault("chunks", source.chunks) # setup compression options if source_h5py: if dest_h5py: # h5py -> h5py; preserve compression options by default kws.setdefault("compression", source.compression) kws.setdefault("compression_opts", source.compression_opts) kws.setdefault("shuffle", source.shuffle) kws.setdefault("fletcher32", source.fletcher32) kws.setdefault("fillvalue", source.fillvalue) else: # h5py -> zarr; use zarr default compression options kws.setdefault("fill_value", source.fillvalue) else: if dest_h5py: # zarr -> h5py; use some vaguely sensible defaults kws.setdefault("chunks", True) kws.setdefault("compression", "gzip") kws.setdefault("compression_opts", 1) kws.setdefault("shuffle", False) kws.setdefault("fillvalue", source.fill_value) else: # zarr -> zarr; preserve compression options by default kws.setdefault("compressor", source.compressor) kws.setdefault("filters", source.filters) kws.setdefault("order", source.order) kws.setdefault("fill_value", source.fill_value) # create new dataset in destination ds = dest.create_dataset(name, shape=source.shape, dtype=source.dtype, **kws) # copy data - N.B., go chunk by chunk to avoid loading # everything into memory shape = ds.shape chunks = ds.chunks chunk_offsets = [range(0, s, c) for s, c in zip(shape, chunks)] for offset in itertools.product(*chunk_offsets): sel = tuple(slice(o, min(s, o + c)) for o, s, c in zip(offset, shape, chunks)) ds[sel] = source[sel] n_bytes_copied += ds.size * ds.dtype.itemsize # copy attributes if not without_attrs: if dest_h5py and "filters" in source.attrs: # No filters key in v3 metadata so it was stored in the # attributes instead. We cannot copy this key to # HDF5 attrs, though! source_attrs = source.attrs.asdict().copy() source_attrs.pop("filters", None) else: source_attrs = source.attrs ds.attrs.update(source_attrs) n_copied += 1 else: log(f"skip {source.name} {source.shape} {source.dtype}") n_skipped += 1 elif root or not shallow: # copy a group # check if an array is in the way do_copy = True exists_array = dest is not None and name in dest and hasattr(dest[name], "shape") if exists_array: if if_exists == "raise": raise CopyError(f"an array {name!r} already exists in destination {dest.name!r}") elif if_exists == "skip": do_copy = False # take action if do_copy: # log action log(f"copy {source.name}") if not dry_run: # clear the way if exists_array: del dest[name] # require group in destination grp = dest.require_group(name) # copy attributes if not without_attrs: grp.attrs.update(source.attrs) else: # setup for dry run without creating any groups in the # destination if dest is not None: grp = dest.get(name, None) else: grp = None # recurse for k in source.keys(): c, s, b = _copy( log, source[k], grp, name=k, root=False, shallow=shallow, without_attrs=without_attrs, if_exists=if_exists, dry_run=dry_run, **create_kws, ) n_copied += c n_skipped += s n_bytes_copied += b n_copied += 1 else: log(f"skip {source.name}") n_skipped += 1 return n_copied, n_skipped, n_bytes_copied
[docs] def copy_all( source, dest, shallow=False, without_attrs=False, log=None, if_exists="raise", dry_run=False, **create_kws, ): """Copy all children of the `source` group into the `dest` group. Parameters ---------- source : group or array/dataset A zarr group or array, or an h5py group or dataset. dest : group A zarr or h5py group. shallow : bool, optional If True, only copy immediate children of `source`. without_attrs : bool, optional Do not copy user attributes. log : callable, file path or file-like object, optional If provided, will be used to log progress information. if_exists : {'raise', 'replace', 'skip', 'skip_initialized'}, optional How to handle arrays that already exist in the destination group. If 'raise' then a CopyError is raised on the first array already present in the destination group. If 'replace' then any array will be replaced in the destination. If 'skip' then any existing arrays will not be copied. If 'skip_initialized' then any existing arrays with all chunks initialized will not be copied (not available when copying to h5py). dry_run : bool, optional If True, don't actually copy anything, just log what would have happened. **create_kws Passed through to the create_dataset method when copying an array/dataset. Returns ------- n_copied : int Number of items copied. n_skipped : int Number of items skipped. n_bytes_copied : int Number of bytes of data that were actually copied. Examples -------- >>> import h5py >>> import zarr >>> import numpy as np >>> source = h5py.File('data/example.h5', mode='w') >>> foo = source.create_group('foo') >>> baz = foo.create_dataset('bar/baz', data=np.arange(100), chunks=(50,)) >>> spam = source.create_dataset('spam', data=np.arange(100, 200), chunks=(30,)) >>> zarr.tree(source) / ├── foo │ └── bar │ └── baz (100,) int64 └── spam (100,) int64 >>> dest = zarr.group() >>> import sys >>> zarr.copy_all(source, dest, log=sys.stdout) copy /foo copy /foo/bar copy /foo/bar/baz (100,) int64 copy /spam (100,) int64 all done: 4 copied, 0 skipped, 1,600 bytes copied (4, 0, 1600) >>> dest.tree() / ├── foo │ └── bar │ └── baz (100,) int64 └── spam (100,) int64 >>> source.close() Notes ----- Please note that this is an experimental feature. The behaviour of this function is still evolving and the default behaviour and/or parameters may change in future versions. """ # value checks _check_dest_is_group(dest) # setup counting variables n_copied = n_skipped = n_bytes_copied = 0 zarr_version = getattr(source, "_version", 2) # setup logging with _LogWriter(log) as log: for k in source.keys(): c, s, b = _copy( log, source[k], dest, name=k, root=False, shallow=shallow, without_attrs=without_attrs, if_exists=if_exists, dry_run=dry_run, **create_kws, ) n_copied += c n_skipped += s n_bytes_copied += b if zarr_version == 2: dest.attrs.update(**source.attrs) # log a final message with a summary of what happened _log_copy_summary(log, dry_run, n_copied, n_skipped, n_bytes_copied) return n_copied, n_skipped, n_bytes_copied
[docs] def consolidate_metadata(store: BaseStore, metadata_key=".zmetadata", *, path=""): """ Consolidate all metadata for groups and arrays within the given store into a single resource and put it under the given key. This produces a single object in the backend store, containing all the metadata read from all the zarr-related keys that can be found. After metadata have been consolidated, use :func:`open_consolidated` to open the root group in optimised, read-only mode, using the consolidated metadata to reduce the number of read operations on the backend store. Note, that if the metadata in the store is changed after this consolidation, then the metadata read by :func:`open_consolidated` would be incorrect unless this function is called again. .. note:: This is an experimental feature. Parameters ---------- store : MutableMapping or string Store or path to directory in file system or name of zip file. metadata_key : str Key to put the consolidated metadata under. path : str or None Path corresponding to the group that is being consolidated. Not required for zarr v2 stores. Returns ------- g : :class:`zarr.hierarchy.Group` Group instance, opened with the new consolidated metadata. See Also -------- open_consolidated """ store = normalize_store_arg(store, mode="w") version = store._store_version if version == 2: def is_zarr_key(key): return key.endswith(".zarray") or key.endswith(".zgroup") or key.endswith(".zattrs") else: assert_zarr_v3_api_available() sfx = _get_metadata_suffix(store) # type: ignore def is_zarr_key(key): return ( key.endswith(".array" + sfx) or key.endswith(".group" + sfx) or key == "zarr.json" ) # cannot create a group without a path in v3 # so create /meta/root/consolidated group to store the metadata if "consolidated" not in store: _create_group(store, path="consolidated") if not metadata_key.startswith("meta/root/"): metadata_key = "meta/root/consolidated/" + metadata_key # path = 'consolidated' out = { "zarr_consolidated_format": 1, "metadata": {key: json_loads(store[key]) for key in store if is_zarr_key(key)}, } store[metadata_key] = json_dumps(out) return open_consolidated(store, metadata_key=metadata_key, path=path)
[docs] def open_consolidated(store: StoreLike, metadata_key=".zmetadata", mode="r+", **kwargs): """Open group using metadata previously consolidated into a single key. This is an optimised method for opening a Zarr group, where instead of traversing the group/array hierarchy by accessing the metadata keys at each level, a single key contains all of the metadata for everything. For remote data sources where the overhead of accessing a key is large compared to the time to read data. The group accessed must have already had its metadata consolidated into a single key using the function :func:`consolidate_metadata`. This optimised method only works in modes which do not change the metadata, although the data may still be written/updated. Parameters ---------- store : MutableMapping or string Store or path to directory in file system or name of zip file. metadata_key : str Key to read the consolidated metadata from. The default (.zmetadata) corresponds to the default used by :func:`consolidate_metadata`. mode : {'r', 'r+'}, optional Persistence mode: 'r' means read only (must exist); 'r+' means read/write (must exist) although only writes to data are allowed, changes to metadata including creation of new arrays or group are not allowed. **kwargs Additional parameters are passed through to :func:`zarr.creation.open_array` or :func:`zarr.hierarchy.open_group`. Returns ------- g : :class:`zarr.hierarchy.Group` Group instance, opened with the consolidated metadata. See Also -------- consolidate_metadata """ # normalize parameters zarr_version = kwargs.get("zarr_version") store = normalize_store_arg( store, storage_options=kwargs.get("storage_options"), mode=mode, zarr_version=zarr_version ) if mode not in {"r", "r+"}: raise ValueError(f"invalid mode, expected either 'r' or 'r+'; found {mode!r}") path = kwargs.pop("path", None) if store._store_version == 2: ConsolidatedStoreClass = ConsolidatedMetadataStore else: assert_zarr_v3_api_available() ConsolidatedStoreClass = ConsolidatedMetadataStoreV3 # default is to store within 'consolidated' group on v3 if not metadata_key.startswith("meta/root/"): metadata_key = "meta/root/consolidated/" + metadata_key # setup metadata store meta_store = ConsolidatedStoreClass(store, metadata_key=metadata_key) # pass through chunk_store = kwargs.pop("chunk_store", None) or store return open(store=meta_store, chunk_store=chunk_store, mode=mode, path=path, **kwargs)