from __future__ import annotations
from dataclasses import dataclass
from typing import TYPE_CHECKING
from warnings import warn
import numpy as np
from numcodecs.vlen import VLenBytes, VLenUTF8
from zarr.abc.codec import ArrayBytesCodec
from zarr.core.buffer import Buffer, NDBuffer
from zarr.core.common import JSON, parse_named_configuration
from zarr.core.strings import cast_to_string_dtype
from zarr.registry import register_codec
if TYPE_CHECKING:
from typing import Self
from zarr.core.array_spec import ArraySpec
# can use a global because there are no parameters
_vlen_utf8_codec = VLenUTF8()
_vlen_bytes_codec = VLenBytes()
[docs]
@dataclass(frozen=True)
class VLenUTF8Codec(ArrayBytesCodec):
def __init__(self) -> None:
warn(
"The codec `vlen-utf8` is currently not part in the Zarr format 3 specification. It "
"may not be supported by other zarr implementations and may change in the future.",
category=UserWarning,
stacklevel=2,
)
super().__init__()
[docs]
@classmethod
def from_dict(cls, data: dict[str, JSON]) -> Self:
_, configuration_parsed = parse_named_configuration(
data, "vlen-utf8", require_configuration=False
)
configuration_parsed = configuration_parsed or {}
return cls(**configuration_parsed)
[docs]
def to_dict(self) -> dict[str, JSON]:
return {"name": "vlen-utf8", "configuration": {}}
[docs]
def evolve_from_array_spec(self, array_spec: ArraySpec) -> Self:
return self
async def _decode_single(
self,
chunk_bytes: Buffer,
chunk_spec: ArraySpec,
) -> NDBuffer:
assert isinstance(chunk_bytes, Buffer)
raw_bytes = chunk_bytes.as_array_like()
decoded = _vlen_utf8_codec.decode(raw_bytes)
assert decoded.dtype == np.object_
decoded.shape = chunk_spec.shape
# coming out of the code, we know this is safe, so don't issue a warning
as_string_dtype = cast_to_string_dtype(decoded, safe=True)
return chunk_spec.prototype.nd_buffer.from_numpy_array(as_string_dtype)
async def _encode_single(
self,
chunk_array: NDBuffer,
chunk_spec: ArraySpec,
) -> Buffer | None:
assert isinstance(chunk_array, NDBuffer)
return chunk_spec.prototype.buffer.from_bytes(
_vlen_utf8_codec.encode(chunk_array.as_numpy_array())
)
[docs]
def compute_encoded_size(self, input_byte_length: int, _chunk_spec: ArraySpec) -> int:
# what is input_byte_length for an object dtype?
raise NotImplementedError("compute_encoded_size is not implemented for VLen codecs")
[docs]
@dataclass(frozen=True)
class VLenBytesCodec(ArrayBytesCodec):
def __init__(self) -> None:
warn(
"The codec `vlen-bytes` is currently not part in the Zarr format 3 specification. It "
"may not be supported by other zarr implementations and may change in the future.",
category=UserWarning,
stacklevel=2,
)
super().__init__()
[docs]
@classmethod
def from_dict(cls, data: dict[str, JSON]) -> Self:
_, configuration_parsed = parse_named_configuration(
data, "vlen-bytes", require_configuration=False
)
configuration_parsed = configuration_parsed or {}
return cls(**configuration_parsed)
[docs]
def to_dict(self) -> dict[str, JSON]:
return {"name": "vlen-bytes", "configuration": {}}
[docs]
def evolve_from_array_spec(self, array_spec: ArraySpec) -> Self:
return self
async def _decode_single(
self,
chunk_bytes: Buffer,
chunk_spec: ArraySpec,
) -> NDBuffer:
assert isinstance(chunk_bytes, Buffer)
raw_bytes = chunk_bytes.as_array_like()
decoded = _vlen_bytes_codec.decode(raw_bytes)
assert decoded.dtype == np.object_
decoded.shape = chunk_spec.shape
return chunk_spec.prototype.nd_buffer.from_numpy_array(decoded)
async def _encode_single(
self,
chunk_array: NDBuffer,
chunk_spec: ArraySpec,
) -> Buffer | None:
assert isinstance(chunk_array, NDBuffer)
return chunk_spec.prototype.buffer.from_bytes(
_vlen_bytes_codec.encode(chunk_array.as_numpy_array())
)
[docs]
def compute_encoded_size(self, input_byte_length: int, _chunk_spec: ArraySpec) -> int:
# what is input_byte_length for an object dtype?
raise NotImplementedError("compute_encoded_size is not implemented for VLen codecs")
register_codec("vlen-utf8", VLenUTF8Codec)
register_codec("vlen-bytes", VLenBytesCodec)