Zarr-Python
Release 2.17.1

Zarr Developers

Mar 06, 2024

CONTENTS

1 Getting Started 1
2 Tutorial 3
3 API reference 33
4 Specifications 119
5 Release notes 133
6 License 159
7 Acknowledgments 161
8 Contributing to Zarr 165
Python Module Index 173

Index 175

CHAPTER
ONE

GETTING STARTED

Zarr is a format for the storage of chunked, compressed, N-dimensional arrays inspired by HDF5, h5py and bcolz.

The project is fiscally sponsored by NumFOCUS, a US 501(c)(3) public charity, and development is supported by the
MRC Centre for Genomics and Global Health and the Chan Zuckerberg Initiative.

These documents describe the Zarr Python implementation. More information about the Zarr format can be found on
the main website.

1.1 Highlights

* Create N-dimensional arrays with any NumPy dtype.

* Chunk arrays along any dimension.

* Compress and/or filter chunks using any NumCodecs codec.

« Store arrays in memory, on disk, inside a Zip file, on S3, ...

* Read an array concurrently from multiple threads or processes.

* Write to an array concurrently from multiple threads or processes.

* Organize arrays into hierarchies via groups.

1.2 Contributing

Feedback and bug reports are very welcome, please get in touch via the GitHub issue tracker. See Contributing to Zarr
for further information about contributing to Zarr.

1.3 Projects using Zarr

If you are using Zarr, we would love to hear about it.

https://www.hdfgroup.org/HDF5/
https://www.h5py.org/
https://bcolz.readthedocs.io/
https://numfocus.org/
https://www.cggh.org
https://chanzuckerberg.com/
https://zarr.dev
https://numcodecs.readthedocs.io/
https://github.com/zarr-developers/zarr-python/issues
https://github.com/zarr-developers/community/issues/19

Zarr-Python, Release 2.17.1

1.3.1 Installation

Zarr depends on NumPy. It is generally best to install NumPy first using whatever method is most appropriate for your
operating system and Python distribution. Other dependencies should be installed automatically if using one of the
installation methods below.

Install Zarr from PyPI:

[$ pip install zarr

Alternatively, install Zarr via conda:

[$ conda install -c conda-forge zarr

To install the latest development version of Zarr, you can use pip with the latest GitHub main:

[$ pip install git+https://github.com/zarr-developers/zarr-python.git

To work with Zarr source code in development, install from GitHub:

$ git clone --recursive https://github.com/zarr-developers/zarr-python.git
$ cd zarr-python
$ python -m pip install -e .

To verify that Zarr has been fully installed, run the test suite:

$ pip install pytest
$ python -m pytest -v --pyargs zarr

2 Chapter 1. Getting Started

https://numpy.org/doc/stable/user/install.html

CHAPTER
TWO

TUTORIAL

Zarr provides classes and functions for working with N-dimensional arrays that behave like NumPy arrays but whose
data is divided into chunks and each chunk is compressed. If you are already familiar with HDF5 then Zarr arrays
provide similar functionality, but with some additional flexibility.

2.1 Creating an array

Zarr has several functions for creating arrays. For example:

>>> import zarr

>>> z = zarr.zeros((10000, 10000), chunks=(1000, 1000), dtype='i4"')
>>> z

<zarr.core.Array (10000, 10000) int32>

The code above creates a 2-dimensional array of 32-bit integers with 10000 rows and 10000 columns, divided into
chunks where each chunk has 1000 rows and 1000 columns (and so there will be 100 chunks in total).

For a complete list of array creation routines see the zarr. creation module documentation.

2.2 Reading and writing data

Zarr arrays support a similar interface to NumPy arrays for reading and writing data. For example, the entire array can
be filled with a scalar value:

[>>> z[:] = 42

Regions of the array can also be written to, e.g.:

>>> import numpy as np
>>> z[0, :] = np.arange(10000)
>>> z[:, 0] = np.arange(10000)

The contents of the array can be retrieved by slicing, which will load the requested region into memory as a NumPy
array, e.g.:

>>> z[0, 0]
0

>>> z[-1, -1]
42

(continues on next page)

Zarr-Python, Release 2.17.1

(continued from previous page)

>>> z[0, :]

array ([0, 1, 2, ..., 9997, 9998, 9999], dtype=int32)
>>> z[:, 0]
array([O, 1, 2, ..., 9997, 9998, 9999], dtype=int32)
>>> z[:]
array([[O, 1, 2, ..., 9997, 9998, 99997,

[1, 42, 42, ..., 42, 42, 427,

[2, 42, 42, ..., 42, 42, 427,

[9997, 42, 42, ..., 42, 42, 4217,

[9998, 42, 42, ..., 42, 42, 4217,

[9999, 42, 42, ..., 42, 42, 4211, dtype=int32)

2.3 Persistent arrays

In the examples above, compressed data for each chunk of the array was stored in main memory. Zarr arrays can also
be stored on a file system, enabling persistence of data between sessions. For example:

>>> z1 = zarr.open('data/example.zarr', mode="w', shape=(10000, 10000),
chunks=(1000, 1000), dtype='i4")

The array above will store its configuration metadata and all compressed chunk data in a directory called
‘data/example.zarr’ relative to the current working directory. The zarr.convenience.open() function provides
a convenient way to create a new persistent array or continue working with an existing array. Note that although the
function is called “open”, there is no need to close an array: data are automatically flushed to disk, and files are auto-
matically closed whenever an array is modified.

Persistent arrays support the same interface for reading and writing data, e.g.:

>>> zI1[:] = 42
>>> z1[0, :] = np.arange(10000)
>>> z1[:, 0] np.arange (10000)

Check that the data have been written and can be read again:

>>> z2 = zarr.open('data/example.zarr', mode="r")
>>> np.all(zl[:] == z2[:]1)
True

If you are just looking for a fast and convenient way to save NumPy arrays to disk then load back into memory later,
the functions zarr. convenience.save() and zarr.convenience. load() may be useful. E.g.:

>>> a = np.arange(10)

>>> zarr.save('data/example.zarr', a)
>>> zarr.load('data/example.zarr')
array([®, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Please note that there are a number of other options for persistent array storage, see the section on Storage alternatives
below.

4 Chapter 2. Tutorial

Zarr-Python, Release 2.17.1

2.4 Resizing and appending

A Zarr array can be resized, which means that any of its dimensions can be increased or decreased in length. For
example:

>>> z = zarr.zeros(shape=(10000, 10000), chunks=(1000, 1000))
>>> z[:] = 42

>>> z.resize (20000, 10000)

>>> z.shape

(20000, 10000)

Note that when an array is resized, the underlying data are not rearranged in any way. If one or more dimensions are
shrunk, any chunks falling outside the new array shape will be deleted from the underlying store.

For convenience, Zarr arrays also provide an append () method, which can be used to append data to any axis. E.g.:

>>> a = np.arange (10000000, dtype='i4').reshape(10000, 1000)
>>> z = zarr.array(a, chunks=(1000, 100))

>>> z.shape

(10000, 1000)

>>> z.append(a)

(20000, 1000)

>>> z.append(np.vstack([a, a]), axis=1)

(20000, 2000)

>>> z.shape

(20000, 2000)

2.5 Compressors

A number of different compressors can be used with Zarr. A separate package called NumCodecs is available which
provides a common interface to various compressor libraries including Blosc, Zstandard, LZ4, Zlib, BZ2 and LZMA.
Different compressors can be provided via the compressor keyword argument accepted by all array creation functions.
For example:

>>> from numcodecs import Blosc

>>> compressor = Blosc(cname='zstd', clevel=3, shuffle=Blosc.BITSHUFFLE)
>>> data = np.arange (100000000, dtype='i4').reshape(10000, 10000)

>>> z = zarr.array(data, chunks=(1000, 1000), compressor=compressor)

>>> Z.Ccompressor

Blosc(cname="'zstd', clevel=3, shuffle=BITSHUFFLE, blocksize=0)

This array above will use Blosc as the primary compressor, using the Zstandard algorithm (compression level 3) inter-
nally within Blosc, and with the bit-shuffle filter applied.

When using a compressor, it can be useful to get some diagnostics on the compression ratio. Zarr arrays provide a
info property which can be used to print some diagnostics, e.g.:

>>> z.info

Type I zarr.core.Array
Data type : int32

Shape : (10000, 10000)
Chunk shape : (1000, 1000)

(continues on next page)

2.4. Resizing and appending 5

https://numcodecs.readthedocs.io/

Zarr-Python, Release 2.17.1

(continued from previous page)

Order : C

Read-only : False

Compressor : Blosc(cname="'zstd', clevel=3, shuffle=BITSHUFFLE,
: blocksize=0)

Store type : zarr.storage.KVStore

No. bytes : 400000000 (381.5M)

No. bytes stored : 3379344 (3.2M)

Storage ratio : 118.4

Chunks initialized : 100/100

If you don’t specify a compressor, by default Zarr uses the Blosc compressor. Blosc is generally very fast and can be
configured in a variety of ways to improve the compression ratio for different types of data. Blosc is in fact a “meta-
compressor”, which means that it can use a number of different compression algorithms internally to compress the data.
Blosc also provides highly optimized implementations of byte- and bit-shuffle filters, which can improve compression
ratios for some data. A list of the internal compression libraries available within Blosc can be obtained via:

>>> from numcodecs import blosc
>>> blosc.list_compressors()
['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd']

In addition to Blosc, other compression libraries can also be used. For example, here is an array using Zstandard
compression, level 1:

>>> from numcodecs import Zstd

>>> z = zarr.array(np.arange (100000000, dtype='i4') .reshape(10000, 10000),
chunks=(1000, 1000), compressor=Zstd(level=1))

>>> Zz.compressor
Zstd(level=1)

Here is an example using LZMA with a custom filter pipeline including LZMA’s built-in delta filter:

>>> import lzma

>>> lzma_filters = [dict(id=1zma.FILTER_DELTA, dist=4),

e dict(id=1zma.FILTER_LZMA2, preset=1)]

>>> from numcodecs import LZMA

>>> compressor = LZMA(filters=1zma_filters)

>>> z = zarr.array(np.arange (100000000, dtype='i4').reshape(10000, 10000),
A chunks=(1000, 1000), compressor=compressor)

>>> Z.Ccompressor
LZMA(format=1, check=-1, preset=None, filters=[{'dist': 4, 'id': 3}, {'id': 33, 'preset
' 13D

The default compressor can be changed by setting the value of the zarr. storage.default_compressor variable,
e.g.

>>> import zarr.storage
>>> from numcodecs import Zstd, Blosc
>>> # switch to using Zstandard
. zarr.storage.default_compressor = Zstd(level=1)
>>> z = zarr.zeros(100000000, chunks=1000000)
>>> Z.compressor
Zstd(level=1)

(continues on next page)

6 Chapter 2. Tutorial

Zarr-Python, Release 2.17.1

(continued from previous page)

>>> # switch back to Blosc defaults
. zarr.storage.default_compressor = Blosc()

To disable compression, set compressor=None when creating an array, e.g.:

>>> z = zarr.zeros (100000000, chunks=1000000, compressor=None)
>>> z.compressor is None
True

2.6 Filters

In some cases, compression can be improved by transforming the data in some way. For example, if nearby values
tend to be correlated, then shuffling the bytes within each numerical value or storing the difference between adjacent
values may increase compression ratio. Some compressors provide built-in filters that apply transformations to the data
prior to compression. For example, the Blosc compressor has built-in implementations of byte- and bit-shuffle filters,
and the LZMA compressor has a built-in implementation of a delta filter. However, to provide additional flexibility
for implementing and using filters in combination with different compressors, Zarr also provides a mechanism for
configuring filters outside of the primary compressor.

Here is an example using a delta filter with the Blosc compressor:

>>> from numcodecs import Blosc, Delta

>>> filters = [Delta(dtype='i4")]

>>> compressor = Blosc(cname='zstd', clevel=1, shuffle=Blosc.SHUFFLE)

>>> data = np.arange (100000000, dtype='i4').reshape(10000, 10000)

>>> z = zarr.array(data, chunks=(1000, 1000), filters=filters, compressor=compressor)
>>> z.info

Type : zarr.core.Array
Data type : int32

Shape : (10000, 10000)

Chunk shape : (1000, 1000)

Order : C

Read-only : False

Filter [0] : Delta(dtype="'<i4d")
Compressor : Blosc(cname="zstd', clevel=1, shuffle=SHUFFLE, blocksize=0)
Store type : zarr.storage.KVStore
No. bytes : 400000000 (381.5M)
No. bytes stored : 1290562 (1.2M)
Storage ratio : 309.9

Chunks initialized : 100/100

For more information about available filter codecs, see the Numcodecs documentation.

2.6. Filters 7

https://numcodecs.readthedocs.io/

Zarr-Python, Release 2.17.1

2.7 Groups

Zarr supports hierarchical organization of arrays via groups. As with arrays, groups can be stored in memory, on disk,
or via other storage systems that support a similar interface.

To create a group, use the zarr.group () function:

>>> root = zarr.group()
>>> root
<zarr.hierarchy.Group '/'>

Groups have a similar API to the Group class from h5py. For example, groups can contain other groups:

>>> foo = root.create_group('foo')
>>> bar = foo.create_group('bar')

Groups can also contain arrays, e.g.:

>>> z1 = bar.zeros('baz', shape=(10000, 10000), chunks=(1000, 1000), dtype='i4")
>>> z1
<zarr.core.Array '/foo/bar/baz' (10000, 10000) int32>

Arrays are known as “datasets” in HDF5 terminology. For compatibility with hSpy, Zarr groups also implement the
create_dataset() and require_dataset() methods, e.g.:

>>> z = bar.create_dataset('quux', shape=(10000, 10000), chunks=(1000, 1000), dtype='i4')
>>> z
<zarr.core.Array '/foo/bar/quux' (10000, 10000) int32>

Members of a group can be accessed via the suffix notation, e.g.:

>>> root['foo']
<zarr.hierarchy.Group '/foo'>

The ‘/’ character can be used to access multiple levels of the hierarchy in one call, e.g.:

>>> root['foo/bar']

<zarr.hierarchy.Group '/foo/bar'>

>>> root['foo/bar/baz']

<zarr.core.Array '/foo/bar/baz' (10000, 10000) int32>

The zarr.hierarchy.Group. tree () method can be used to print a tree representation of the hierarchy, e.g.:

>>> root.tree()

/
L foo

L— bar
baz (10000, 10000) int32
quux (10000, 10000) int32

The zarr. convenience. open() function provides a convenient way to create or re-open a group stored in a directory
on the file-system, with sub-groups stored in sub-directories, e.g.:

>>> root = zarr.open('data/group.zarr', mode="w')
>>> root
(continues on next page)

8 Chapter 2. Tutorial

https://www.h5py.org/

Zarr-Python, Release 2.17.1

(continued from previous page)
<zarr.hierarchy.Group '/'>
>>> z = root.zeros('foo/bar/baz', shape=(10000, 10000), chunks=(1000, 1000), dtype='i4')
>>> z
<zarr.core.Array '/foo/bar/baz' (10000, 10000) int32>

Groups can be used as context managers (in a with statement). If the underlying store has a close method, it will be
called on exit.

For more information on groups see the zarr.hierarchy and zarr. convenience API docs.

2.8 Array and group diagnostics

Diagnostic information about arrays and groups is available via the info property. E.g.:

>>> root = zarr.group()

>>> foo = root.create_group('foo')

>>> bar = foo.zeros('bar', shape=1000000, chunks=100000, dtype='i8")

>>> bar[:] = 42

>>> baz = foo.zeros('baz', shape=(1000, 1000), chunks=(100, 100), dtype='£f4")
>>> baz[:] = 4.2

>>> root.info

Name :/

Type : zarr.hierarchy.Group
Read-only : False

Store type : zarr.storage.MemoryStore
No. members : 1

No. arrays : 0

No. groups : 1

Groups : foo

>>> foo.info

Name . /foo

Type : zarr.hierarchy.Group
Read-only : False

Store type : zarr.storage.MemoryStore
No. members : 2

No. arrays : 2

No. groups : 0

Arrays : bar, baz

>>> bar.info

Name : /foo/bar

Type : zarr.core.Array

Data type : int64

Shape : (1000000,)

Chunk shape : (100000,)

Order : C

Read-only : False

Compressor : Blosc(cname='1z4"', clevel=5, shuffle=SHUFFLE, blocksize=0)
Store type : zarr.storage.MemoryStore

No. bytes : 8000000 (7.6M)

(continues on next page)

2.8. Array and group diagnostics 9

Zarr-Python, Release 2.17.1

(continued from previous page)

No. bytes stored 1 33240 (32.5K)
Storage ratio 1 240.7
Chunks initialized : 10/10

>>> baz.info

Name : /foo/baz

Type : zarr.core.Array

Data type : float32

Shape : (1000, 1000)

Chunk shape : (100, 100)

Order : C

Read-only : False

Compressor : Blosc(cname='1z4"', clevel=5, shuffle=SHUFFLE, blocksize=0)
Store type : zarr.storage.MemoryStore
No. bytes : 4000000 (3.8M)

No. bytes stored 1 23943 (23.4K)

Storage ratio : 167.1

Chunks initialized : 100/100

Groups also have the zarr. hierarchy.Group. tree() method, e.g.:

>>> root.tree()

/
L foo

bar (1000000,) int64
baz (1000, 1000) float32

If you're using Zarr within a Jupyter notebook (requires ipytree), calling tree() will generate an interactive tree
representation, see the repr_tree.ipynb notebook for more examples.

2.9 User attributes

Zarr arrays and groups support custom key/value attributes, which can be useful for storing application-specific meta-
data. For example:

>>> root = zarr.group()

>>> root.attrs['foo'] = 'bar'

>>> z = root.zeros('zzz', shape=(10000, 10000))
>>> z.attrs['baz'] = 42

>>> z.attrs['qux'] = [1, 4, 7, 12]

>>> sorted(root.attrs)

['foo']

>>> 'foo' in root.attrs
True

>>> root.attrs['foo']
'bar’

>>> sorted(z.attrs)
['baz', 'qux']

>>> z.attrs['baz']
42

(continues on next page)

10 Chapter 2. Tutorial

https://github.com/QuantStack/ipytree
https://nbviewer.org/github/zarr-developers/zarr-python/blob/main/notebooks/repr_tree.ipynb

Zarr-Python, Release 2.17.1

(continued from previous page)

>>> z.attrs['qux']
[1, 4, 7, 12]

Internally Zarr uses JSON to store array attributes, so attribute values must be JSON serializable.

2.10 Advanced indexing

As of version 2.2, Zarr arrays support several methods for advanced or “fancy” indexing, which enable a subset of data
items to be extracted or updated in an array without loading the entire array into memory.

Note that although this functionality is similar to some of the advanced indexing capabilities available on NumPy arrays
and on h5py datasets, the Zarr API for advanced indexing is different from both NumPy and hSpy, so please read
this section carefully. For a complete description of the indexing API, see the documentation for the zarr. core.Array
class.

2.10.1 Indexing with coordinate arrays

Items from a Zarr array can be extracted by providing an integer array of coordinates. E.g.:

>>> z = zarr.array(np.arange(10) ** 2)

>>> z[:]

array([0, 1, 4, 9, 16, 25, 36, 49, 64, 81])
>>> z.get_coordinate_selection([2, 5])

array([4, 25])

Coordinate arrays can also be used to update data, e.g.:

>>> z.set_coordinate_selection([2, 5], [-1, -21)
>>> z[:]
array([0, 1, -1, 9, 16, -2, 36, 49, 64, 81])

For multidimensional arrays, coordinates must be provided for each dimension, e.g.:

>>> z = zarr.array(np.arange(15) .reshape(3, 5))
>>> z[:]
array([[0, 1, 2, 3, 4],

[5 6, 7, 8, 9],

[10, 11, 12, 13, 14]11)
>>> z.get_coordinate_selection(([0, 2], [1, 31))
array([1, 131
>>> z.set_coordinate_selection(([0, 2], [1, 31), [-1, -21)
>>> z[:]
array([[0, -1, 2, 3, 4],

[5 6, 7, 8, 9],

[10, 11, 12, -2, 14]1])

For convenience, coordinate indexing is also available via the vindex property, as well as the square bracket operator,
e.g.

2.10. Advanced indexing 11

Zarr-Python, Release 2.17.1

>>> z.vindex[[0, 2], [1, 3]]
array([-1, -21)
>>> z.vindex[[0, 2], [1, 311 = [-3, -4]
>>> z[:]
array([[®, -3, 2, 3, 4],
[s5, 6, 7, 8, 91,
[10, 11, 12, -4, 14]11)
>>> z[[0, 2], [1, 3]1]
array([-3, -41)

When the indexing arrays have different shapes, they are broadcast together. That is, the following two calls are equiv-
alent:

>>> z[1, [1, 311
array([6, 8])

>>> z[[1, 11, [1, 3]]
array([6, 81)

2.10.2 Indexing with a mask array

Items can also be extracted by providing a Boolean mask. E.g.:

>>> z = zarr.array(np.arange(10) ** 2)

>>> z[:]

array([0, 1, 4, 9, 16, 25, 36, 49, 64, 81])
>>> sel = np.zeros_like(z, dtype=bool)

>>> sel[2] = True

>>> sel[5] = True

>>> z.get_mask_selection(sel)

array([4, 25]1)

>>> z.set_mask_selection(sel, [-1, -2])

>>> z[:]

array([0, 1, -1, 9, 16, -2, 36, 49, 64, 81])

Here’s a multidimensional example:

>>> z = zarr.array(np.arange(1l5) .reshape(3, 5))
>>> z[:]
array([[0, 1, 2, 3, 4],
[5 6, 7, 8, 9],
[10, 11, 12, 13, 1411
>>> sel = np.zeros_like(z, dtype=bool)
>>> sel[0, 1] = True
>>> sel[2, 3] = True
>>> z.get_mask_selection(sel)
array([1, 13])
>>> z.set_mask_selection(sel, [-1, -2])
>>> z[:]
array([[0, -1, 2, 3, 4],
[5 6, 7, 8, 9],
[10, 11, 12, -2, 1411

For convenience, mask indexing is also available via the vindex property, e.g.:

12 Chapter 2. Tutorial

Zarr-Python, Release 2.17.1

>>> z.vindex[sel]

array([-1, -21)

>>> z.vindex[sel] = [-3, -4]

>>> z[:]

array([[®, -3, 2, 3, 4],
[s5 6, 7, 8, 9],
[10, 11, 12, -4, 141D

Mask indexing is conceptually the same as coordinate indexing, and is implemented internally via the same machinery.
Both styles of indexing allow selecting arbitrary items from an array, also known as point selection.

2.10.3 Orthogonal indexing

Zarr arrays also support methods for orthogonal indexing, which allows selections to be made along each dimension
of an array independently. For example, this allows selecting a subset of rows and/or columns from a 2-dimensional
array. E.g.:

>>> z = zarr.array(np.arange(l5) .reshape(3, 5))
>>> z[:]
array([[®, 1, 2, 3, 4],
[5, 6, 7, 8, 9],
[10, 11, 12, 13, 141D
>>> z.get_orthogonal_selection(([0, 2], slice(None))) # select first and third rows
array([[0, 1, 2, 3, 4],
[10, 11, 12, 13, 1411
>>> z.get_orthogonal_selection((slice(None), [1, 3])) # select second and fourth columns
array([[1, 31,

[6, 81,

[11, 131D
>>> z.get_orthogonal_selection(([0, 2], [1, 31)) # select rows [0, 2] and columns.
‘*’[11 4]
array([[1, 3],

[11, 131D

Data can also be modified, e.g.:

>>> z.set_orthogonal_selection(([0®, 2], [1, 31), [[-1, -2]1, [-3, -4]11)
>>> z[:]
array([[0, -1, 2, -2, 4],

[5 6, 7, 8, 91,

[10, -3, 12, -4, 141D

For convenience, the orthogonal indexing functionality is also available via the oindex property, e.g.:

>>> z = zarr.array(np.arange(15) .reshape(3, 5))
>>> z.oindex[[0®, 2], :] # select first and third rows
array([[®, 1, 2, 3, 4],

[160, 11, 12, 13, 141D
>>> z.oindex[:, [1, 3]] # select second and fourth columns
array([[1, 31,

[6, 8],

[11, 1311

(continues on next page)

2.10. Advanced indexing 13

Zarr-Python, Release 2.17.1

(continued from previous page)

>>> z.oindex[[®, 2], [1, 3]] # select rows [0, 2] and columns [1, 4]
array([[1, 3],

[11, 13]11)
>>> z.oindex[[0, 2], [1, 311 = [[-1, -21, [-3, -4]1]
>>> z[:]

array([[0, -1, 2, -2, 4],
[5 6, 7, 8, 9],
[101 _31 12! _4! 14]])

Any combination of integer, slice, 1D integer array and/or 1D Boolean array can be used for orthogonal indexing.

If the index contains at most one iterable, and otherwise contains only slices and integers, orthogonal indexing is also
available directly on the array:

>>> z = zarr.array(np.arange(15) .reshape(3, 5))
>>> all(z.oindex[[0®, 2], :]1 == z[[0, 2], :1)
True

2.10.4 Block Indexing

As of version 2.16.0, Zarr also support block indexing, which allows selections of whole chunks based on their logical
indices along each dimension of an array. For example, this allows selecting a subset of chunk aligned rows and/or
columns from a 2-dimensional array. E.g.:

>>> import zarr
>>> import numpy as np
>>> z = zarr.array(np.arange(100).reshape(10, 10), chunks=(3, 3))

Retrieve items by specifying their block coordinates:

>>> z.get_block_selection(1)

array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 391,
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59]11)

Equivalent slicing:

>>> z[3:6]

array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59]11)

For convenience, the block selection functionality is also available via the blocks property, e.g.:

>>> z.blocks[1]

array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59]1])

Block index arrays may be multidimensional to index multidimensional arrays. For example:

14 Chapter 2. Tutorial

Zarr-Python, Release 2.17.1

>>> z.blocks[0, 1:3]

array([[3, 4, 5, 6, 7, 8],
[13, 14, 15, 16, 17, 18],
[23, 24, 25, 26, 27, 28]])

Data can also be modified. Let’s start by a simple 2D array:

>>> import zarr
>>> import numpy as np
>>> z = zarr.zeros((6, 6), dtype=int, chunks=2)

Set data for a selection of items:

>>> z.set_block_selection((l, 0), 1)

>>> z[...]

array([[0, ®, 0, O, 0, O],
[6, 0, O, O, 0, O],
[1, 1, 0, 0, 0, O],
[1, 1, 0, O, 0, O],
[6, 0, O, O, 0, O],
[6, 0, O, O, 0, 0]])

For convenience, this functionality is also available via the blocks property. E.g.:

>>> z.blocks[:, 2] = 7

>>> z[...]

array([[®, 0, 0, O, 7, 7],
[6, ®, 0, 0, 7, 7],
[1, 1, 0, O, 7, 7],
[1, 1, 0, 0, 7, 7],
[6, ®, 0, 0, 7, 7],
[6, 0, 0, 0, 7, 711)

Any combination of integer and slice can be used for block indexing:

>>> z.blocks[2, 1:3]
array([[0, 0, 7, 7],
[0, 0, 7, 71D

2.10.5 Indexing fields in structured arrays

All selection methods support a fields parameter which allows retrieving or replacing data for a specific field in an
array with a structured dtype. E.g.:

>>> a

np.array([(b'aaa", 1, 4.2),

(b'bbb', 2, 8.4),

(b'ccc', 3, 12.6)],
- dtype=[('foo', 'S3"), ('bar', 'i4'), ('baz', "f8')1)
>>> z = zarr.array(a)
>>> z['foo']
array([b'aaa', b'bbb', b'ccc'],

dtype="|S3")

(continues on next page)

2.10. Advanced indexing 15

Zarr-Python, Release 2.17.1

(continued from previous page)

>>> z['baz']
array([4.2, 8.4, 12.6])
>>> z.get_basic_selection(slice(0, 2), fields='bar')
array([1, 2], dtype=int32)
>>> z.get_coordinate_selection([0, 2], fields=['foo', 'baz'])
array([(b'aaa', 4.2), (b'ccc', 12.6)],

dtype=[('foo', 'S3"), ('baz', '<f8')])

2.11 Storage alternatives

Zarr can use any object that implements the MutableMapping interface from the collections module in the Python
standard library as the store for a group or an array.

Some pre-defined storage classes are provided in the zarr.storage module. For example, the zarr.storage.
DirectoryStore class provides a MutableMapping interface to a directory on the local file system. This is used
under the hood by the zarr. convenience.open() function. In other words, the following code:

[>>> z = zarr.open('data/example.zarr', mode="w', shape=1000000, dtype='i4"')

...is short-hand for:

>>> store = zarr.DirectoryStore('data/example.zarr')
>>> z = zarr.create(store=store, overwrite=True, shape=1000000, dtype='i4"')

...and the following code:

[>>> root = zarr.open('data/example.zarr', mode='w')

...is short-hand for:

>>> store = zarr.DirectoryStore('data/example.zarr')
>>> root = zarr.group(store=store, overwrite=True)

Any other compatible storage class could be used in place of zarr. storage.DirectoryStore in the code examples
above. For example, here is an array stored directly into a ZIP archive, via the zarr. storage.ZipStore class:

>>> store = zarr.ZipStore('data/example.zip', mode='w')

>>> root = zarr.group(store=store)

>>> z = root.zeros('foo/bar', shape=(1000, 1000), chunks=(100, 100), dtype='i4d'")
>>> z[:] = 42

>>> store.close()

Re-open and check that data have been written:

>>> store = zarr.ZipStore('data/example.zip', mode='r"')
>>> root = zarr.group(store=store)
>>> z = root['foo/bar']

>>> z[:]

array([[42, 42, 42, ..., 42, 42, 42],
[42, 42, 42, ..., 42, 42, 42],
[42, 42, 42, ..., 42, 42, 42],

(continues on next page)

16 Chapter 2. Tutorial

https://docs.python.org/3/library/collections.html#module-collections

Zarr-Python, Release 2.17.1

(continued from previous page)

[42, 42, 42, ..., 42, 42, 42],

[42, 42, 42, ..., 42, 42, 421,
[42, 42, 42, ..., 42, 42, 421], dtype=int32)

>>> store.close()

Note that there are some limitations on how ZIP archives can be used, because items within a ZIP archive cannot be
updated in place. This means that data in the array should only be written once and write operations should be aligned
with chunk boundaries. Note also that the close () method must be called after writing any data to the store, otherwise
essential records will not be written to the underlying ZIP archive.

Another storage alternative is the zarr. storage.DBlNStore class, added in Zarr version 2.2. This class allows any
DBM-style database to be used for storing an array or group. Here is an example using a Berkeley DB B-tree database
for storage (requires bsddb3 to be installed):

>>> import bsddb3

>>> store = zarr.DBMStore('data/example.bdb', open=bsddb3.btopen)

>>> root = zarr.group(store=store, overwrite=True)

>>> z = root.zeros('foo/bar', shape=(1000, 1000), chunks=(100, 100), dtype='id")
>>> z[:] = 42

>>> store.close()

Also added in Zarr version 2.2 is the zarr. storage. LMDBStore class which enables the lightning memory-mapped
database (LMDB) to be used for storing an array or group (requires Imdb to be installed):

>>> store = zarr.LMDBStore('data/example.lmdb"')

>>> root = zarr.group(store=store, overwrite=True)

>>> z = root.zeros('foo/bar', shape=(1000, 1000), chunks=(100, 100), dtype='i4d'")
>>> z[:] = 42

>>> store.close()

In Zarr version 2.3 is the zarr. storage. SQLiteStore class which enables the SQLite database to be used for storing
an array or group (requires Python is built with SQLite support):

>>> store = zarr.SQLiteStore('data/example.sqgldb')

>>> root = zarr.group(store=store, overwrite=True)

>>> z = root.zeros('foo/bar', shape=(1000, 1000), chunks=(100, 100), dtype='i4d")
>>> z[:] = 42

>>> store.close()

Also added in Zarr version 2.3 are two storage classes for interfacing with server-client databases. The zarr. storage.
RedisStore class interfaces Redis (an in memory data structure store), and the zarr. storage.MongoDB class inter-
faces with MongoDB (an object oriented NoSQL database). These stores respectively require the redis-py and pymongo
packages to be installed.

For compatibility with the N5 data format, Zarr also provides an N5 backend (this is currently an experimental feature).
Similar to the ZIP storage class, an zarr.n5.N5Store can be instantiated directly:

>>> store = zarr.N5Store('data/example.n5")

>>> root = zarr.group(store=store)

>>> z = root.zeros('foo/bar', shape=(1000, 1000), chunks=(100, 100), dtype='i4d")
>>> z[:] = 42

For convenience, the N5 backend will automatically be chosen when the filename ends with .n5:

2.11. Storage alternatives 17

https://www.jcea.es/programacion/pybsddb.htm
https://lmdb.readthedocs.io/
https://redis.io/
https://www.mongodb.com/
https://redis-py.readthedocs.io
https://api.mongodb.com/python/current/
https://github.com/saalfeldlab/n5

Zarr-Python, Release 2.17.1

[>>> root = zarr.open('data/example.n5', mode="w")

2.11.1 Distributed/cloud storage

It is also possible to use distributed storage systems. The Dask project has implementations of the MutableMapping
interface for Amazon S3 (S3Map), Hadoop Distributed File System (HDFSMap) and Google Cloud Storage (GCSMap),
which can be used with Zarr.

Here is an example using S3Map to read an array created previously:

>>> import s3fs

>>> import zarr

>>> s3 = s3fs.S3FileSystem(anon=True, client_kwargs=dict(region_name='eu-west-2"))
>>> store = s3fs.S3Map(root='zarr-demo/store', s3=s3, check=False)

>>> root = zarr.group(store=store)

>>> z = root['foo/bar/baz']

>>> 2

<zarr.core.Array '/foo/bar/baz' (21,) |S1>

>>> z.info

Name : /foo/bar/baz

Type : zarr.core.Array
Data type : |S1

Shape : (21,)

Chunk shape : (7))

Order : C

Read-only : False

Compressor : Blosc(cname='1z4"', clevel=5, shuffle=SHUFFLE, blocksize=0)
Store type : zarr.storage.KVStore
No. bytes : 21

No. bytes stored : 382

Storage ratio : 0.1

Chunks initialized : 3/3

>>> z[:]

array([b'H', b'e', b'l", b'l', b'o', b" ', b'f', b'r', b'o"', b'm', b" ',
b't', b'h', b'e', b' ', b'c', b'l"', b'o', b'u', b b'!
dtype="|S1")

>>> z[:].tobytes()

b'Hello from the cloud!'

Zarr now also has a builtin storage backend for Azure Blob Storage. The class is zarr. storage.ABSStore (requires
azure-storage-blob to be installed):

>>> import azure.storage.blob

>>> container_client = azure.storage.blob.ContainerClient(...)

>>> store = zarr.ABSStore(client=container_client, prefix='zarr-testing')

>>> root = zarr.group(store=store, overwrite=True)

>>> z = root.zeros('foo/bar', shape=(1000, 1000), chunks=(100, 100), dtype='i4d")
>>> z[:] = 42

When using an actual storage account, provide account_name and account_key arguments to zarr.storage.
ABSStore, the above client is just testing against the emulator. Please also note that this is an experimental feature.

Note that retrieving data from a remote service via the network can be significantly slower than retrieving data from
a local file system, and will depend on network latency and bandwidth between the client and server systems. If you

18 Chapter 2. Tutorial

https://s3fs.readthedocs.io/en/latest/api.html#s3fs.mapping.S3Map
https://hdfs3.readthedocs.io/en/latest/api.html#hdfs3.mapping.HDFSMap
http://gcsfs.readthedocs.io/en/latest/api.html#gcsfs.mapping.GCSMap
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-python

Zarr-Python, Release 2.17.1

are experiencing poor performance, there are several things you can try. One option is to increase the array chunk size,
which will reduce the number of chunks and thus reduce the number of network round-trips required to retrieve data
for an array (and thus reduce the impact of network latency). Another option is to try to increase the compression ratio
by changing compression options or trying a different compressor (which will reduce the impact of limited network
bandwidth).

As of version 2.2, Zarr also provides the zarr. storage.LRUStoreCache which can be used to implement a local
in-memory cache layer over a remote store. E.g.:

>>> s3 = s3fs.S3FileSystem(anon=True, client_kwargs=dict(region_name='eu-west-2"))
>>> store = s3fs.S3Map(root='zarr-demo/store', s3=s3, check=False)
>>> cache = zarr.LRUStoreCache(store, max_size=2%%28)
>>> root = zarr.group(store=cache)
>>> z = root['foo/bar/baz']
>>> from timeit import timeit
>>> # first data access is relatively slow, retrieved from store
... timeit('print(z[:].tobytes())', number=1, globals=globals())
b'Hello from the cloud!’
0.1081731989979744
>>> # second data access is faster, uses cache

. timeit('print(z[:].tobytes())', number=1, globals=globals())
b'Hello from the cloud!’
0.0009490990014455747

If you are still experiencing poor performance with distributed/cloud storage, please raise an issue on the GitHub issue
tracker with any profiling data you can provide, as there may be opportunities to optimise further either within Zarr or
within the mapping interface to the storage.

2.11.2 10 with fsspec

As of version 2.5, zarr supports passing URLSs directly to fsspec, and having it create the “mapping” instance automati-
cally. This means, that for all of the backend storage implementations supported by fsspec, you can skip importing and
configuring the storage explicitly. For example:

>>> g = zarr.open_group("s3://zarr-demo/store", storage_options={'anon': True})
>>> g['foo/bar/baz'][:].tobytes()
b'Hello from the cloud!'

The provision of the protocol specifier “s3://” will select the correct backend. Notice the kwargs storage_options,
used to pass parameters to that backend.

As of version 2.6, write mode and complex URLSs are also supported, such as:

>>> g = zarr.open_group('simplecache::s3://zarr-demo/store",
- storage_options={"s3": {'anon': True}})
>>> g['foo/bar/baz'][:].tobytes() # downloads target file
b'Hello from the cloud!'

>>> g['foo/bar/baz'][:].tobytes() # uses cached file

b'Hello from the cloud!'

The second invocation here will be much faster. Note that the storage_options have become more complex here, to
account for the two parts of the supplied URL.

It is also possible to initialize the filesystem outside of Zarr and then pass it through. This requires creating an zarr.
storage.FSStore object explicitly. For example:

2.11. Storage alternatives 19

https://filesystem-spec.readthedocs.io/en/latest/
https://filesystem-spec.readthedocs.io/en/latest/api.html#built-in-implementations

Zarr-Python, Release 2.17.1

>>> import s3fs

>>> fs = s3fs.S3FileSystem(anon=True)

>>> store = zarr.storage.FSStore('/zarr-demo/store', fs=fs)
>>> g = zarr.open_group(store)

This is useful in cases where you want to also use the same fsspec filesystem object separately from Zarr.

2.11.3 Accessing ZIP archives on S3

The built-in zarr.storage.ZipStore will only work with paths on the local file-system; however it is possible
to access ZIP-archived Zarr data on the cloud via the ZipFileSystem class from fsspec. The following example
demonstrates how to access a ZIP-archived Zarr group on s3 using s3fs and ZipFileSystem:

>>> s3_path = "s3://path/to/my.zarr.zip"

>>>

>>> s3 = s3fs.S3FileSystem()

>>> f = s3.open(s3_path)

>>> fs = ZipFileSystem(f, mode="r")

>>> store = FSMap("", fs, check=False)

>>>

>>> # caching may improve performance when repeatedly reading the same data
>>> cache = zarr.storage.LRUStoreCache(store, max_size=2%%28)

>>> z = zarr.group(store=cache)

This store can also be generated with £sspec’s handler chaining, like so:

[>>> store = zarr.storage.FSStore(url=f"zip::{s3_path}", mode="r") J

This can be especially useful if you have a very large ZIP-archived Zarr array or group on s3 and only need to access a
small portion of it.

2.11.4 Consolidating metadata

Since there is a significant overhead for every connection to a cloud object store such as S3, the pattern described in
the previous section may incur significant latency while scanning the metadata of the array hierarchy, even though each
individual metadata object is small. For cases such as these, once the data are static and can be regarded as read-only,
at least for the metadata/structure of the array hierarchy, the many metadata objects can be consolidated into a single
one via zarr.convenience.consolidate_metadata(). Doing this can greatly increase the speed of reading the
array metadata, e.g.:

[>>> zarr.consolidate_metadata(store)]

This creates a special key with a copy of all of the metadata from all of the metadata objects in the store.

Later, to open a Zarr store with consolidated metadata, use zarr. convenience.open_consolidated(), e.g.:

[>>> root = zarr.open_consolidated(store)]

This uses the special key to read all of the metadata in a single call to the backend storage.

Note that, the hierarchy could still be opened in the normal way and altered, causing the consolidated meta-
data to become out of sync with the real state of the array hierarchy. In this case, zarr.convenience.
consolidate_metadata() would need to be called again.

20 Chapter 2. Tutorial

https://filesystem-spec.readthedocs.io/en/latest/_modules/fsspec/implementations/zip.html
https://s3fs.readthedocs.io/en/latest/

Zarr-Python, Release 2.17.1

To protect against consolidated metadata accidentally getting out of sync, the root group returned by zarr.
convenience.open_consolidated() is read-only for the metadata, meaning that no new groups or arrays can be
created, and arrays cannot be resized. However, data values with arrays can still be updated.

2.12 Copying/migrating data

If you have some data in an HDFS file and would like to copy some or all of it into a Zarr group, or vice-versa, the zarr.
convenience.copy() and zarr.convenience.copy_all() functions can be used. Here’s an example copying a
group named ‘foo’ from an HDFS5 file to a Zarr group:

>>> import hS5py
>>> import zarr
>>> import numpy as np
>>> source = h5py.File('data/example.h5', mode="w")
>>> foo = source.create_group('foo')
>>> baz = foo.create_dataset('bar/baz', data=np.arange(100), chunks=(50,))
>>> spam = source.create_dataset('spam', data=np.arange(100, 200), chunks=(30,))
>>> zarr.tree(source)
/
foo
L— bar
L— baz (100,) int64
spam (100,) int64
>>> dest = zarr.open_group('data/example.zarr', mode="w')
>>> from sys import stdout
>>> zarr.copy(source['foo'], dest, log=stdout)
copy /foo
copy /foo/bar
copy /foo/bar/baz (100,) int64
all done: 3 copied, ® skipped, 800 bytes copied
(3, 0, 800)
>>> dest.tree() # N.B., no spam

/
L— foo

L— bar

L— baz (100,) int64
>>> source.close()

If rather than copying a single group or array you would like to copy all groups and arrays, use zarr. convenience.
copy_all(),e.g.:

>>> source = h5py.File('data/example.h5', mode="r")

>>> dest = zarr.open_group('data/example2.zarr', mode="w'")
>>> zarr.copy_all(source, dest, log=stdout)

copy /foo

copy /foo/bar

copy /foo/bar/baz (100,) int64

copy /spam (100,) int64

all done: 4 copied, ® skipped, 1,600 bytes copied

(4, 0, 1600)
>>> dest.tree()
/

(continues on next page)

2.12. Copying/migrating data 21

Zarr-Python, Release 2.17.1

foo
L— bar
L— baz (100,) int64

spam (100,) int64

(continued from previous page)

If you need to copy data between two Zarr groups, the zarr.convenience.copy() and zarr.convenience.
copy_all() functions can be used and provide the most flexibility. However, if you want to copy data in the most
efficient way possible, without changing any configuration options, the zarr. convenience. copy_store() func-
tion can be used. This function copies data directly between the underlying stores, without any decompression or
re-compression, and so should be faster. E.g.:

>>> import zarr
>>> import numpy as np
>>> storel = zarr.DirectoryStore('data/example.zarr')
>>> root = zarr.group(storel, overwrite=True)
>>> baz = root.create_dataset('foo/bar/baz', data=np.arange(100), chunks=(50,))
>>> spam = root.create_dataset('spam', data=np.arange(100, 200), chunks=(30,))
>>> root.tree()
/
foo
L— bar
L— baz (100,) int64
spam (100,) int64
>>> from sys import stdout
>>> store2 = zarr.ZipStore('data/example.zip', mode='w")
>>> zarr.copy_store(storel, store2, log=stdout)
copy .zgroup
copy foo/.zgroup
copy foo/bar/.zgroup
copy foo/bar/baz/.zarray
copy foo/bar/baz/0
copy foo/bar/baz/1
copy spam/.zarray
copy spam/0
copy spam/1
copy spam/2
copy spam/3
all done: 11 copied, O skipped, 1,138 bytes copied
(11, 0, 1138)
>>> new_root = zarr.group(store2)
>>> new_root.tree()

/

L bar
L— baz (100,) int64
spam (100,) int64
>>> new_root['foo/bar/baz'][:]
array([0, 1, 2, ..., 97, 98, 99])
>>> store2.close() # ZIP stores need to be closed

22 Chapter 2. Tutorial

Zarr-Python, Release 2.17.1

2.13 String arrays

There are several options for storing arrays of strings.

If your strings are all ASCII strings, and you know the maximum length of the string in your array, then you can use
an array with a fixed-length bytes dtype. E.g.:

>>> z = zarr.zeros(10, dtype='S6")
>>> z

<zarr.core.Array (10,) |[S6>

>>> z[0] = b'Hello'

>>> z[1] = b'world!'

>>> z[:]
array([b'Hello', b'world!', b'', b'', b'', b'', b'', b'', b'', b''],
dtype="|S6")

A fixed-length unicode dtype is also available, e.g.:

>>> greetings = ['jHola mundo!', 'Hej Varlden!', 'Servus Woid!', 'Hei maailma!"',
'Xin chao th gii', 'Njatjeta Boté!', ' I',
‘', '', 'Hellé, vilag!', 'Zdravo svete!',
1] ']

>>> text_data = greetings * 10000
>>> z = zarr.array(text_data, dtype='U20")

>>> z

<zarr.core.Array (120000,) <U20>

>>> z[:]

array(['jHola mundo!', 'Hej Varlden!', 'Servus Woid!', ...,

'Hello6, vilag!', 'Zdravo svete!', ''],
dtype="<U20")

For variable-length strings, the object dtype can be used, but a codec must be provided to encode the data (see also
Object arrays below). At the time of writing there are four codecs available that can encode variable length string ob-
jects: numcodecs.vlen.VLenUTF8, numcodecs. json.JSON, numcodecs.msgpacks.MsgPack. and numcodecs.
pickles.Pickle. E.g. using VLenUTFS8:

>>> import numcodecs

>>> z = zarr.array(text_data, dtype=object, object_codec=numcodecs.VLenUTF8())
>>> z

<zarr.core.Array (120000,) object>

>>> z.filters

[VLenUTF8()]

>>> z[:]

array(['jHola mundo!', 'Hej Varlden!', 'Servus Woid!', ...,
'Helldé, vilag!', 'Zdravo svete!', ''], dtype=object)

As a convenience, dtype=str (or dtype=unicode on Python 2.7) can be used, which is a short-hand for
dtype=object, object_codec=numcodecs.VLenUTF8(),e.g.:

>>> z = zarr.array(text_data, dtype=str)
>>> z

<zarr.core.Array (120000,) object>

>>> z.filters

[VLenUTF8()1]

(continues on next page)

2.13. String arrays 23

https://numcodecs.readthedocs.io/en/stable/vlen.html#numcodecs.vlen.VLenUTF8
https://numcodecs.readthedocs.io/en/stable/json.html#numcodecs.json.JSON
https://numcodecs.readthedocs.io/en/stable/msgpacks.html#numcodecs.msgpacks.MsgPack
https://numcodecs.readthedocs.io/en/stable/pickles.html#numcodecs.pickles.Pickle
https://numcodecs.readthedocs.io/en/stable/pickles.html#numcodecs.pickles.Pickle

Zarr-Python, Release 2.17.1

(continued from previous page)
>>> z[:]
array(['jHola mundo!', 'Hej Varlden!', 'Servus Woid!', ...,
'Hello6, vilag!', 'Zdravo svete!', ''], dtype=object)

Variable-length byte strings are also supported via dtype=object. Again an object_codec is required, which
can be one of numcodecs.vlen.VLenBytes or numcodecs.pickles.Pickle. For convenience, dtype=bytes
(or dtype=str on Python 2.7) can be used as a short-hand for dtype=object, object_codec=numcodecs.
VLenBytes(), e.g.:

>>> bytes_data = [g.encode('utf-8') for g in greetings] * 10000
>>> z = zarr.array(bytes_data, dtype=bytes)
>>> z
<zarr.core.Array (120000,) object>
>>> z.filters
[VLenBytes()]
>>> z[:]
array([b'\xc2\xalHola mundo!', b'Hej V\xc3\xa4rlden!', b'Servus Woid!"',
., b'Hell\xc3\xb3, vil\xc3\xalg!', b'Zdravo svete!',
b'\xe®\xb9\x80\xe0\xb8\xae\xe0\xb8\xa5\xe®\xb9\x82\xe®\xb8\xa5\xe0\xb9\x80\xe®\
—xb8\xa7\xe0\xb8\xb4\xe®\xb8\xa5\xe®\xb8\x94\xe®\xb9\x8c'], dtype=object)

If you know ahead of time all the possible string values that can occur, you could also use the numcodecs. categorize.
Categorize codec to encode each unique string value as an integer. E.g.:

>>> categorize = numcodecs.Categorize(greetings, dtype=object)

>>> z = zarr.array(text_data, dtype=object, object_codec=categorize)
>>> z

<zarr.core.Array (120000,) object>

>>> z.filters

[Categorize(dtype='|0', astype='|ul', labels=['jHola mundo!', 'Hej Varlden!', 'Servus.
Woid!', ...1)]
>>> z[:]
array(['jHola mundo!', 'Hej Varlden!', 'Servus Woid!', ...,
'Hello6, vilag!', 'Zdravo svete!', ''], dtype=object)

2.14 Object arrays

Zarr supports arrays with an “object” dtype. This allows arrays to contain any type of object, such as variable length
unicode strings, or variable length arrays of numbers, or other possibilities. When creating an object array, a codec
must be provided via the object_codec argument. This codec handles encoding (serialization) of Python objects.
The best codec to use will depend on what type of objects are present in the array.

At the time of writing there are three codecs available that can serve as a general purpose object codec and support
encoding of a mixture of object types: numcodecs. json. JSON, numcodecs .msgpacks.MsgPack. and numcodecs.
pickles.Pickle.

For example, using the JSON codec:

>>> z = zarr.empty(5, dtype=object, object_codec=numcodecs.JSON())
>>> z[0] = 42
>>> z[1] = 'foo'

(continues on next page)

24 Chapter 2. Tutorial

https://numcodecs.readthedocs.io/en/stable/vlen.html#numcodecs.vlen.VLenBytes
https://numcodecs.readthedocs.io/en/stable/pickles.html#numcodecs.pickles.Pickle
https://numcodecs.readthedocs.io/en/stable/categorize.html#numcodecs.categorize.Categorize
https://numcodecs.readthedocs.io/en/stable/categorize.html#numcodecs.categorize.Categorize
https://numcodecs.readthedocs.io/en/stable/json.html#numcodecs.json.JSON
https://numcodecs.readthedocs.io/en/stable/msgpacks.html#numcodecs.msgpacks.MsgPack
https://numcodecs.readthedocs.io/en/stable/pickles.html#numcodecs.pickles.Pickle
https://numcodecs.readthedocs.io/en/stable/pickles.html#numcodecs.pickles.Pickle

Zarr-Python, Release 2.17.1

(continued from previous page)

>>> z[2] = ['bar', 'baz', 'qux'l]
>>> z[3] = {'a': 1, 'b': 2.2}
>>> z[:]

array([42, 'foo', list(['bar', 'baz', 'qux']), {'a': 1, 'b': 2.2}, None], dtype=object)

Not all codecs support encoding of all object types. The numcodecs.pickles.Pickle codec is the most flexible,
supporting encoding any type of Python object. However, if you are sharing data with anyone other than yourself, then
Pickle is not recommended as it is a potential security risk. This is because malicious code can be embedded within
pickled data. The JSON and MsgPack codecs do not have any security issues and support encoding of unicode strings,
lists and dictionaries. MsgPack is usually faster for both encoding and decoding.

2.14.1 Ragged arrays

If you need to store an array of arrays, where each member array can be of any length and stores the same primitive
type (a.k.a. a ragged array), the numcodecs.vlen.VLenArray codec can be used, e.g.:

>>> z = zarr.empty(4, dtype=object, object_codec=numcodecs.VLenArray(int))

>>> z

<zarr.core.Array (4,) object>

>>> z.filters

[VLenArray(dtype="'<i8')]

>>> z[0] = np.array([1l, 3, 5])

>>> z[1] = np.array([4])

>>> z[2] np.array([7, 9, 14])

>>> z[:]

array([array([1, 3, 5]), array([4]), array([7, 9, 14]),
array([], dtype=int64)], dtype=object)

As aconvenience, dtype="array:T' can be used as a short-hand for dtype=object, object_codec=numcodecs.
VLenArray('T'), where “T” can be any NumPy primitive dtype such as ‘i4’ or ‘t8’. E.g.:

>>> z = zarr.empty(4, dtype='array:i8")

>>> z

<zarr.core.Array (4,) object>

>>> z.filters

[VLenArray(dtype='<i8')]

>>> z[0] = np.array([1, 3, 5])

>>> z[1] = np.array([4])

>>> z[2] np.array([7, 9, 14])

>>> z[:]

array([array([1l, 3, 5]), array([4]), array([7, 9, 14]),
array([], dtype=int64)], dtype=object)

2.14. Object arrays 25

https://numcodecs.readthedocs.io/en/stable/pickles.html#numcodecs.pickles.Pickle
https://numcodecs.readthedocs.io/en/stable/vlen.html#numcodecs.vlen.VLenArray

Zarr-Python, Release 2.17.1

2.15 Chunk optimizations

2.15.1 Chunk size and shape

In general, chunks of at least 1 megabyte (1M) uncompressed size seem to provide better performance, at least when
using the Blosc compression library.

The optimal chunk shape will depend on how you want to access the data. E.g., for a 2-dimensional array, if you only
ever take slices along the first dimension, then chunk across the second dimension. If you know you want to chunk
across an entire dimension you can use None or -1 within the chunks argument, e.g.:

>>> z1 = zarr.zeros((10000, 10000), chunks=(100, None), dtype='i4')
>>> z1.chunks
(100, 10000)

Alternatively, if you only ever take slices along the second dimension, then chunk across the first dimension, e.g.:

>>> z2 = zarr.zeros((10000, 10000), chunks=(None, 100), dtype='i4")
>>> z2.chunks
(10000, 100)

If you require reasonable performance for both access patterns then you need to find a compromise, e.g.:

>>> z3 = zarr.zeros((10000, 10000), chunks=(1000, 1000), dtype="i4d')
>>> z3.chunks
(1000, 1000)

If you are feeling lazy, you can let Zarr guess a chunk shape for your data by providing chunks=True, although please
note that the algorithm for guessing a chunk shape is based on simple heuristics and may be far from optimal. E.g.:

>>> z4 = zarr.zeros((10000, 10000), chunks=True, dtype='i4')
>>> z4.chunks
(625, 625)

If you know you are always going to be loading the entire array into memory, you can turn off chunks by providing
chunks=False, in which case there will be one single chunk for the array:

>>> z5 = zarr.zeros((10000, 10000), chunks=False, dtype='i4'")
>>> z5.chunks
(10000, 10000)

2.15.2 Chunk memory layout

The order of bytes within each chunk of an array can be changed via the order keyword argument, to use either C or
Fortran layout. For multi-dimensional arrays, these two layouts may provide different compression ratios, depending
on the correlation structure within the data. E.g.:

>>> a = np.arange (100000000, dtype='i4').reshape(10000, 10000).T
>>> ¢ = zarr.array(a, chunks=(1000, 1000))

>>> c.info

Type . zarr.core.Array

Data type : int32

Shape : (10000, 10000)

(continues on next page)

26 Chapter 2. Tutorial

Zarr-Python, Release 2.17.1

(continued from previous page)

Chunk shape : (1000, 1000)

Order : C

Read-only : False

Compressor : Blosc(cname='1z4"', clevel=5, shuffle=SHUFFLE, blocksize=0)
Store type : zarr.storage.KVStore

No. bytes : 400000000 (381.5M)

No. bytes stored : 6696010 (6.4M)

Storage ratio : 59.7

Chunks initialized : 100/100
>>> f = zarr.array(a, chunks=(1000, 1000), order='F')

>>> f.info

Type : zarr.core.Array
Data type : int32

Shape : (10000, 10000)

Chunk shape : (1000, 1000)

Order : F

Read-only : False

Compressor : Blosc(cname='1z4"', clevel=5, shuffle=SHUFFLE, blocksize=0)
Store type : zarr.storage.KVStore
No. bytes : 400000000 (381.5M)
No. bytes stored : 4684636 (4.5M)
Storage ratio : 85.4

Chunks initialized : 100/100

In the above example, Fortran order gives a better compression ratio. This is an artificial example but illustrates the
general point that changing the order of bytes within chunks of an array may improve the compression ratio, depending
on the structure of the data, the compression algorithm used, and which compression filters (e.g., byte-shuffie) have
been applied.

2.15.3 Empty chunks

As of version 2.11, it is possible to configure how Zarr handles the storage of chunks that are “empty” (i.e., every
element in the chunk is equal to the array’s fill value). When creating an array with write_empty_chunks=False,
Zarr will check whether a chunk is empty before compression and storage. If a chunk is empty, then Zarr does not store
it, and instead deletes the chunk from storage if the chunk had been previously stored.

This optimization prevents storing redundant objects and can speed up reads, but the cost is added computation during
array writes, since the contents of each chunk must be compared to the fill value, and these advantages are contingent
on the content of the array. If you know that your data will form chunks that are almost always non-empty, then there
is no advantage to the optimization described above. In this case, creating an array with write_empty_chunks=True
(the default) will instruct Zarr to write every chunk without checking for emptiness.

The following example illustrates the effect of the write_empty_chunks flag on the time required to write an array
with different values.:

>>> import zarr
>>> import numpy as np
>>> import time
>>> from tempfile import TemporaryDirectory
>>> def timed_write(write_empty_chunks):
Measure the time required and number of objects created when writing

(continues on next page)

2.15. Chunk optimizations 27

Zarr-Python, Release 2.17.1

(continued from previous page)

to a Zarr array with random ints or fill value.
chunks = (8192,)

shape = (chunks[0] * 1024,)

data = np.random.randint(0®, 255, shape)

dtype = 'uint8'

with TemporaryDirectory() as store:
arr = zarr.open(store,
shape=shape,
chunks=chunks,
dtype=dtype,
write_empty_chunks=write_empty_chunks,
fill_value=0,
mode="w")
initialize all chunks
arr[:] = 100
result = []
for value in (data, arr.fill_value):
start = time.time()
arr[:] = value
elapsed = time.time() - start
result.append((elapsed, arr.nchunks_initialized))

e return result
>>> for write_empty_chunks in (True, False):

full, empty = timed_write(write_empty_chunks)
. print (f'\nwrite_empty_chunks={write_empty_chunks}:\n\tRandom Data: {full[®]:.4f
s, {full[1]} objects stored\n\t Empty Data: {empty[0]:.4f}s, {empty[1]} objects stored\
-n'")

write_empty_chunks=True:
Random Data: 0.1252s, 1024 objects stored
Empty Data: 0.1060s, 1024 objects stored

write_empty_chunks=False:
Random Data: 0.1359s, 1024 objects stored
Empty Data: 0.0301s, 0 objects stored

In this example, writing random data is slightly slower with write_empty_chunks=True, but writing empty data is
substantially faster and generates far fewer objects in storage.

28 Chapter 2. Tutorial

Zarr-Python, Release 2.17.1

2.15.4 Changing chunk shapes (rechunking)

Sometimes you are not free to choose the initial chunking of your input data, or you might have data saved with chunking
which is not optimal for the analysis you have planned. In such cases it can be advantageous to re-chunk the data. For
small datasets, or when the mismatch between input and output chunks is small such that only a few chunks of the input
dataset need to be read to create each chunk in the output array, it is sufficient to simply copy the data to a new array
with the desired chunking, e.g.

>>> a zarr.zeros((10000, 10000), chunks=(100,100), dtype='uintl6', store='a.zarr')
>>> b = zarr.array(a, chunks=(100, 200), store='b.zarr')

If the chunk shapes mismatch, however, a simple copy can lead to non-optimal data access patterns and incur a substan-
tial performance hit when using file based stores. One of the most pathological examples is switching from column-
based chunking to row-based chunking e.g.

>>> a
>>> b

zarr.zeros((10000,10000), chunks=(10000, 1), dtype='uintl6', store='a.zarr')
zarr.array(a, chunks=(1,10000), store='b.zarr')

which will require every chunk in the input data set to be repeatedly read when creating each output chunk. If the entire
array will fit within memory, this is simply resolved by forcing the entire input array into memory as a numpy array
before converting back to zarr with the desired chunking.

>>> a = zarr.zeros((10000,10000), chunks=(10000, 1), dtype='uintl6', store='a.zarr')
>>>b = al[...]
>>> ¢ = zarr.array(b, chunks=(1,10000), store='c.zarr')

For data sets which have mismatched chunks and which do not fit in memory, a more sophisticated approach to rechunk-
ing, such as offered by the rechunker package and discussed here may offer a substantial improvement in performance.

2.16 Parallel computing and synchronization

Zarr arrays have been designed for use as the source or sink for data in parallel computations. By data source we mean
that multiple concurrent read operations may occur. By data sink we mean that multiple concurrent write operations
may occur, with each writer updating a different region of the array. Zarr arrays have not been designed for situations
where multiple readers and writers are concurrently operating on the same array.

Both multi-threaded and multi-process parallelism are possible. The bottleneck for most storage and retrieval operations
is compression/decompression, and the Python global interpreter lock (GIL) is released wherever possible during these
operations, so Zarr will generally not block other Python threads from running.

When using a Zarr array as a data sink, some synchronization (locking) may be required to avoid data loss, depending
on how data are being updated. If each worker in a parallel computation is writing to a separate region of the array,
and if region boundaries are perfectly aligned with chunk boundaries, then no synchronization is required. However, if
region and chunk boundaries are not perfectly aligned, then synchronization is required to avoid two workers attempting
to modify the same chunk at the same time, which could result in data loss.

To give a simple example, consider a 1-dimensional array of length 60, z, divided into three chunks of 20 elements
each. If three workers are running and each attempts to write to a 20 element region (i.e., z[0:20], z[20:40] and
z[40:60]) then each worker will be writing to a separate chunk and no synchronization is required. However, if two
workers are running and each attempts to write to a 30 element region (i.e., z[0:30] and z[30:60]) then it is possible
both workers will attempt to modify the middle chunk at the same time, and synchronization is required to prevent data
loss.

Zarr provides support for chunk-level synchronization. E.g., create an array with thread synchronization:

2.16. Parallel computing and synchronization 29

https://github.com/pangeo-data/rechunker
https://medium.com/pangeo/rechunker-the-missing-link-for-chunked-array-analytics-5b2359e9dc11

Zarr-Python, Release 2.17.1

>>> z = zarr.zeros((10000, 10000), chunks=(1000, 1000), dtype='i4',
e synchronizer=zarr.ThreadSynchronizer())

>>> z
<zarr.core.Array (10000, 10000) int32>

This array is safe to read or write within a multi-threaded program.

Zarr also provides support for process synchronization via file locking, provided that all processes have access to a
shared file system, and provided that the underlying file system supports file locking (which is not the case for some
networked file systems). E.g.:

>>> synchronizer = zarr.ProcessSynchronizer('data/example.sync')

>>> z = zarr.open_array('data/example', mode='w', shape=(10000, 10000),
chunks=(1000, 1000), dtype='i4"',

ce synchronizer=synchronizer)

>>> z
<zarr.core.Array (10000, 10000) int32>

This array is safe to read or write from multiple processes.

When using multiple processes to parallelize reads or writes on arrays using the Blosc compression library, it may
be necessary to set numcodecs.blosc.use_threads = False, as otherwise Blosc may share incorrect global state
amongst processes causing programs to hang. See also the section on Configuring Blosc below.

Please note that support for parallel computing is an area of ongoing research and development. If you are using Zarr for
parallel computing, we welcome feedback, experience, discussion, ideas and advice, particularly about issues related
to data integrity and performance.

2.17 Pickle support

Zarr arrays and groups can be pickled, as long as the underlying store object can be pickled. Instances of any of the
storage classes provided in the zarr. storage module can be pickled, as can the built-in dict class which can also
be used for storage.

Note that if an array or group is backed by an in-memory store like a dict or zarr.storage.MemoryStore, then
when it is pickled all of the store data will be included in the pickled data. However, if an array or group is backed by a
persistent store like a zarr. storage.DirectoryStore, zarr.storage.ZipStore or zarr.storage.DBNStore
then the store data are not pickled. The only thing that is pickled is the necessary parameters to allow the store to
re-open any underlying files or databases upon being unpickled.

E.g., pickle/unpickle an in-memory array:

>>> import pickle

>>> z1 = zarr.array(np.arange(100000))

>>> s = pickle.dumps(zl)

>>> len(s) > 5000 # relatively large because data have been pickled
True

>>> z2 = pickle.loads(s)

>>> z1 == z2

True

>>> np.all(zl[:] == z2[:])

True

E.g., pickle/unpickle an array stored on disk:

30 Chapter 2. Tutorial

Zarr-Python, Release 2.17.1

>>> z3 = zarr.open('data/walnuts.zarr', mode="w', shape=100000, dtype='i8"')
>>> z3[:] = np.arange(100000)

>>> s = pickle.dumps(z3)

>>> len(s) < 200 # small because no data have been pickled

True

>>> z4 = pickle.loads(s)

>>> z3 == z4

True

>>> np.all(z3[:] == z4[:])

True

2.18 Datetimes and timedeltas

NumPy’s datetime64 (‘M8’) and timedelta64 (‘m8’) dtypes are supported for Zarr arrays, as long as the units are
specified. E.g.:

>>> z = zarr.array(['2007-07-13', '2006-01-13', '2010-08-13'], dtype='M8[D]')
>>> z

<zarr.core.Array (3,) datetime64[D]>

>>> z[:]

array(['2007-07-13"', '2006-01-13', '2010-08-13'], dtype='datetime64[D]"')

>>> z[0]

numpy .datetime64('2007-07-13")

>>> z[0] = '1999-12-31"

>>> z[:]

array(['1999-12-31", '2006-01-13', '2010-08-13'], dtype='datetime64[D]"')

2.19 Usage tips

2.19.1 Copying large arrays

Data can be copied between large arrays without needing much memory, e.g.:

>>> z1 = zarr.empty((10000, 10000), chunks=(1000, 1000), dtype='i4d'")
>>> z1[:] = 42

>>> z2 = zarr.empty_like(zl)

>>> z2[:] = z1

Internally the example above works chunk-by-chunk, extracting only the data from z1 required to fill each chunk in z2.
The source of the data (z1) could equally be an h5py Dataset.

2.18. Datetimes and timedeltas 31

Zarr-Python, Release 2.17.1

2.19.2 Configuring Blosc

The Blosc compressor is able to use multiple threads internally to accelerate compression and decompression. By
default, Blosc uses up to 8 internal threads. The number of Blosc threads can be changed to increase or decrease this
number, e.g.:

>>> from numcodecs import blosc
>>> blosc.set_nthreads(2)
8

When a Zarr array is being used within a multi-threaded program, Zarr automatically switches to using Blosc in a single-
threaded “contextual” mode. This is generally better as it allows multiple program threads to use Blosc simultaneously
and prevents CPU thrashing from too many active threads. If you want to manually override this behaviour, set the value
of the blosc.use_threads variable to True (Blosc always uses multiple internal threads) or False (Blosc always
runs in single-threaded contextual mode). To re-enable automatic switching, set blosc.use_threads to None.

Please note that if Zarr is being used within a multi-process program, Blosc may not be safe to use in multi-threaded
mode and may cause the program to hang. If using Blosc in a multi-process program then it is recommended to set
blosc.use_threads = False.

32 Chapter 2. Tutorial

CHAPTER
THREE

API REFERENCE

3.1 Array creation (zarr.creation)

zarr.creation.create(shape: int | Tuple[int, ...], chunks: int | Tuple[int, ...] | bool = True, dtype: dtype[Any] |
None | type[Any] | _SupportsDType[dtype[Any]] | str | tuple[Any, int] | tuple[Any,
Supportsindex | Sequence[Supportsindex]] | listfAny] | _DTypeDict | tuple[Any, Any] =
None, compressor='"default', fill_value: int | None = 0, order: Literal['C’, 'F'] = 'C’,
store: str | MutableMapping | None = None, synchronizer: Synchronizer | None = None,
overwrite: bool = False, path: str | bytes | None = None, chunk_store: MutableMapping |
None = None, filters: Sequence[Codec] | None = None, cache_metadata: bool = True,
cache_attrs: bool = True, read_only: bool = False, object_codec: Codec | None = None,
dimension_separator: Literal[".", /'] | None = None, write_empty_chunks: bool = True, *,
zarr_version: Literal[2, 3] | None = None, meta_array: MetaArray | None = None,
storage_transformers: Sequence[StorageTransformer] = (), **kwargs)

Create an array.
Parameters

shape
[int or tuple of ints] Array shape.

chunks
[int or tuple of ints, optional] Chunk shape. If True, will be guessed from shape and dtype.
If False, will be set to shape, i.e., single chunk for the whole array. If an int, the chunk size
in each dimension will be given by the value of chunks. Default is True.

dtype
[string or dtype, optional] NumPy dtype.

compressor
[Codec, optional] Primary compressor.

fill_value
[object] Default value to use for uninitialized portions of the array.

order
[{‘C’, ‘F’}, optional] Memory layout to be used within each chunk.

store
[MutableMapping or string] Store or path to directory in file system or name of zip file.

synchronizer
[object, optional] Array synchronizer.

overwrite
[bool, optional] If True, delete all pre-existing data in store at path before creating the array.

33

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.SupportsIndex
https://docs.python.org/3/library/collections.abc.html#collections.abc.Sequence
https://docs.python.org/3/library/typing.html#typing.SupportsIndex
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence
https://numcodecs.readthedocs.io/en/stable/abc.html#numcodecs.abc.Codec
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://numcodecs.readthedocs.io/en/stable/abc.html#numcodecs.abc.Codec
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Sequence

Zarr-Python, Release 2.17.1

path
[string, optional] Path under which array is stored.

chunk_store
[MutableMapping, optional] Separate storage for chunks. If not provided, store will be used
for storage of both chunks and metadata.

filters
[sequence of Codecs, optional] Sequence of filters to use to encode chunk data prior to com-
pression.

cache _metadata
[bool, optional] If True, array configuration metadata will be cached for the lifetime of the
object. If False, array metadata will be reloaded prior to all data access and modification
operations (may incur overhead depending on storage and data access pattern).

cache_attrs
[bool, optional] If True (default), user attributes will be cached for attribute read operations.
If False, user attributes are reloaded from the store prior to all attribute read operations.

read_only
[bool, optional] True if array should be protected against modification.

object_codec
[Codec, optional] A codec to encode object arrays, only needed if dtype=object.

dimension_separator
[{*’, °/’}, optional] Separator placed between the dimensions of a chunk.

New in version 2.8.

write_empty_chunks
[bool, optional] If True (default), all chunks will be stored regardless of their contents. If
False, each chunk is compared to the array’s fill value prior to storing. If a chunk is uniformly
equal to the fill value, then that chunk is not be stored, and the store entry for that chunk’s
key is deleted. This setting enables sparser storage, as only chunks with non-fill-value data
are stored, at the expense of overhead associated with checking the data of each chunk.

New in version 2.11.

storage_transformers
[sequence of StorageTransformers, optional] Setting storage transformers, changes the stor-
age structure and behaviour of data coming from the underlying store. The transformers are
applied in the order of the given sequence. Supplying an empty sequence is the same as
omitting the argument or setting it to None. May only be set when using zarr_version 3.

New in version 2.13.

zarr_version
[{None, 2, 3}, optional] The zarr protocol version of the created array. If None, it will be
inferred from store or chunk_store if they are provided, otherwise defaulting to 2.

New in version 2.12.

meta_array
[array-like, optional] An array instance to use for determining arrays to create and return to
users. Use numpy.empty(()) by default.

New in version 2.13.

Returns

34 Chapter 3. API reference

Zarr-Python, Release 2.17.1

[zarr.core.Array]

Examples

Create an array with default settings:

>>> import zarr

>>> z = zarr.create((10000, 10000), chunks=(1000, 1000))
>>> z

<zarr.core.Array (10000, 10000) float64>

Create an array with different some different configuration options:

L

>>> from numcodecs import Blosc

>>> compressor = Blosc(cname='zstd', clevel=1, shuffle=Blosc.BITSHUFFLE)

>>> z = zarr.create((10000, 10000), chunks=(1000, 1000), dtype='il', order='F',
e compressor=compressor)

>>> z
<zarr.core.Array (10000, 10000) int8>

To create an array with object dtype requires a filter that can handle Python object encoding, e.g., MsgPack or
Pickle from numcodecs:

-

>>> from numcodecs import MsgPack

>>> z = zarr.create((10000, 10000), chunks=(1000, 1000), dtype=object,
S0 ¢ object_codec=NMsgPack())

>>> z
<zarr.core.Array (10000, 10000) object>

Example with some filters, and also storing chunks separately from metadata:

>>> from numcodecs import Quantize, Adler32

>>> store, chunk_store = dict(), dict()

>>> z = zarr.create((10000, 10000), chunks=(1000, 1000), dtype='£f8",
filters=[Quantize(digits=2, dtype='£f8'), Adler32(Q)1],
- store=store, chunk_store=chunk_store)

>>> z
<zarr.core.Array (10000, 10000) float64>

zarr.

creation.empty (shape, **kwargs)

Create an empty array.

For parameter definitions see zarr.creation.create().

3.1. Array creation (zarr.creation) 35

Zarr-Python, Release 2.17.1

Notes
The contents of an empty Zarr array are not defined. On attempting to retrieve data from an empty Zarr array,
any values may be returned, and these are not guaranteed to be stable from one access to the next.

zarr.creation.zeros (shape, **kwargs)

Create an array, with zero being used as the default value for uninitialized portions of the array.

For parameter definitions see zarr.creation.create().

Examples

-

>>> import zarr
>>> z = zarr.zeros((10000, 10000), chunks=(1000, 1000))
>>> z
<zarr.core.Array (10000, 10000) float64>
>>> z[:2, :2]
array([[0., 0.7,
[60., 0.11)

.

zarr.creation.ones (shape, **kwargs)
Create an array, with one being used as the default value for uninitialized portions of the array.

For parameter definitions see zarr.creation.create().

Examples

>>> import zarr
>>> z = zarr.ones((10000, 10000), chunks=(1000, 1000))
>>> z
<zarr.core.Array (10000, 10000) float64>
>>> z[:2, :2]
array([[1., 1.7,
[1., 1.1D)

zarr.creation. full (shape, fill_value, **kwargs)

Create an array, with fill_value being used as the default value for uninitialized portions of the array.

For parameter definitions see zarr.creation.create().

Examples

-

>>> import zarr
>>> z = zarr.full((10000, 10000), chunks=(1000, 1000), fill_value=42)
>>> z
<zarr.core.Array (10000, 10000) float64>
>>> z[:2, :2]
array([[42., 42.],
[42., 42.]])

36 Chapter 3. API reference

Zarr-Python, Release 2.17.1

zarr.creation.array(data, **kwargs)

Create an array filled with data.

The data argument should be a NumPy array or array-like object. For other parameter definitions see zarr.
creation.create().

Examples

>>> import numpy as np
>>> import zarr
>>> a = np.arange(100000000) .reshape (10000, 10000)

>>> Z
>>> Z
<zarr

zarr.array(a, chunks=(1000, 1000))

.core.Array (10000, 10000) int64>

zarr.

creation.open_array (store=None, mode='a', shape=None, chunks=True, dtype=None,

compressor='default', fill_value=0, order="C’, synchronizer=None, filters=None,
cache_metadata=True, cache_attrs=True, path=None, object_codec=None,
chunk_store=None, storage_options=None, partial_decompress=False,
write_empty_chunks=True, *, zarr_version=None, dimension_separator: Literal['’,
/'] | None = None, meta_array=None, **kwargs)

Open an array using file-mode-like semantics.

Parameters

store
[MutableMapping or string, optional] Store or path to directory in file system or name of zip
file.

mode
[{‘r, ‘r+’, ‘@', ‘W’, ‘w-°}, optional] Persistence mode: ‘r’ means read only (must exist); ‘r+’
means read/write (must exist); ‘a’ means read/write (create if doesn’t exist); ‘w’ means create
(overwrite if exists); ‘w-" means create (fail if exists).

shape
[int or tuple of ints, optional] Array shape.

chunks
[int or tuple of ints, optional] Chunk shape. If True, will be guessed from shape and dtype.
If False, will be set to shape, i.e., single chunk for the whole array. If an int, the chunk size
in each dimension will be given by the value of chunks. Default is True.

dtype
[string or dtype, optional] NumPy dtype.

compressor
[Codec, optional] Primary compressor.

fill_value
[object, optional] Default value to use for uninitialized portions of the array.

order
[{‘C’, ‘F’}, optional] Memory layout to be used within each chunk.

synchronizer
[object, optional] Array synchronizer.

filters
[sequence, optional] Sequence of filters to use to encode chunk data prior to compression.

3.1. Array creation (zarr.creation) 37

https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

cache_metadata
[bool, optional] If True, array configuration metadata will be cached for the lifetime of the
object. If False, array metadata will be reloaded prior to all data access and modification
operations (may incur overhead depending on storage and data access pattern).

cache_attrs
[bool, optional] If True (default), user attributes will be cached for attribute read operations.
If False, user attributes are reloaded from the store prior to all attribute read operations.

path
[string, optional] Array path within store.

object_codec
[Codec, optional] A codec to encode object arrays, only needed if dtype=object.

chunk_store
[MutableMapping or string, optional] Store or path to directory in file system or name of zip
file.

storage_options
[dict] If using an fsspec URL to create the store, these will be passed to the backend imple-
mentation. Ignored otherwise.

partial_decompress
[bool, optional] If True and while the chunk_store is a FSStore and the compression used
is Blosc, when getting data from the array chunks will be partially read and decompressed
when possible.

write_empty_chunks
[bool, optional] If True (default), all chunks will be stored regardless of their contents. If
False, each chunk is compared to the array’s fill value prior to storing. If a chunk is uniformly
equal to the fill value, then that chunk is not be stored, and the store entry for that chunk’s
key is deleted. This setting enables sparser storage, as only chunks with non-fill-value data
are stored, at the expense of overhead associated with checking the data of each chunk.

New in version 2.11.

zarr_version
[{None, 2, 3}, optional] The zarr protocol version of the array to be opened. If None, it will
be inferred from store or chunk_store if they are provided, otherwise defaulting to 2.

dimension_separator
[{None, ‘., °/’}, optional] Can be used to specify whether the array is in a flat (*.”) or nested
(‘/’) format. If None, the appropriate value will be read from store when present. Otherwise,
defaults to ‘.’ when zarr_version == 2 and/ otherwise.

meta_array
[array-like, optional] An array instance to use for determining arrays to create and return to
users. Use numpy.empty(()) by default.

New in version 2.15.
Returns

z
[zarr.core.Array]

38 Chapter 3. API reference

Zarr-Python, Release 2.17.1

Notes

There is no need to close an array. Data are automatically flushed to the file system.

Examples

>>> import numpy as np

>>> import zarr

>>> z1 = zarr.open_array('data/example.zarr', mode='w', shape=(10000, 10000),
- chunks=(1000, 1000), fill_value=0)
>>> z1[:] = np.arange(100000000) .reshape (10000, 10000)

>>> z1

<zarr.core.Array (10000, 10000) float64>

>>> z2 = zarr.open_array('data/example.zarr', mode='r")

>>> z2

<zarr.core.Array (10000, 10000) float64 read-only>

>>> np.all(zl1[:] == z2[:])

True

zarr.creation.empty_like(a, **kwargs)

Create an empty array like a.

zarr.creation.zeros_like(a, **kwargs)

Create an array of zeros like a.

zarr.creation.ones_like(a, **kwargs)

Create an array of ones like a.

zarr.creation. full_like(a, **kwargs)

Create a filled array like a.

zarr.creation.open_like(a, path, **kwargs)

Open a persistent array like a.

3.2 The Array class (zarr.core)

3.2.1 Classes

Array(store[, path, read_only, chunk_store, ...]) Instantiate an array from an initialized store.

Array

class zarr.core.Array(store: Any, path=None, read_only=False, chunk_store=None, synchronizer=None,
cache_metadata=True, cache_attrs=True, partial_decompress=False,
write_empty_chunks=True, zarr_version=None, meta_array=None)

Bases: object
Instantiate an array from an initialized store.

Parameters

3.2. The Array class (zarr.core) 39

https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#object

Zarr-Python, Release 2.17.1

store

[MutableMapping] Array store, already initialized.

path

[string, optional] Storage path.

read_only

[bool, optional] True if array should be protected against modification.

chunk_store

[MutableMapping, optional] Separate storage for chunks. If not provided, store will be used
for storage of both chunks and metadata.

synchronizer

[object, optional] Array synchronizer.

cache_metadata

[bool, optional] If True (default), array configuration metadata will be cached for the life-
time of the object. If False, array metadata will be reloaded prior to all data access and
modification operations (may incur overhead depending on storage and data access pattern).

cache_attrs

[bool, optional] If True (default), user attributes will be cached for attribute read operations.
If False, user attributes are reloaded from the store prior to all attribute read operations.

partial_decompress

[bool, optional] If True and while the chunk_store is a FSStore and the compression used
is Blosc, when getting data from the array chunks will be partially read and decompressed
when possible.

New in version 2.7.

write_empty_chunks

[bool, optional] If True, all chunks will be stored regardless of their contents. If False (de-
fault), each chunk is compared to the array’s fill value prior to storing. If a chunk is uniformly
equal to the fill value, then that chunk is not be stored, and the store entry for that chunk’s
key is deleted. This setting enables sparser storage, as only chunks with non-fill-value data
are stored, at the expense of overhead associated with checking the data of each chunk.

New in version 2.11.

meta_array

[array-like, optional] An array instance to use for determining arrays to create and return to
users. Use numpy.empty(()) by default.

New in version 2.13.

Attributes Summary

attrs

basename
blocks

A MutableMapping containing user-defined at-
tributes.

Final component of name.

Shortcut for blocked chunked index-
ing, see get_block_selection() and
set_block_selection() for documentation
and examples.

continues on next page

40

Chapter 3. API reference

Zarr-Python, Release 2.17.1

Table 1 - continued from previous page

cdata_shape
chunk_store
chunks
compressor
dtype
fill_value

filters

info
initialized

is_view

itemsize
meta_array

name
nbytes

nbytes_stored
nchunks

nchunks_initialized

ndim
oindex

order

path
read_only

shape

size
store

synchronizer
vindex

write_empty_chunks

A tuple of integers describing the number of chunks
along each dimension of the array.

A MutableMapping providing the underlying storage
for array chunks.

A tuple of integers describing the length of each di-
mension of a chunk of the array.

Primary compression codec.

The NumPy data type.

A value used for uninitialized portions of the array.
One or more codecs used to transform data prior to
compression.

Report some diagnostic information about the array.
The number of chunks that have been initialized with
some data.

A boolean, True if this array is a view on another ar-
ray.

The size in bytes of each item in the array.

An array-like instance to use for determining arrays
to create and return to users.

Array name following hSpy convention.

The total number of bytes that would be required to
store the array without compression.

The total number of stored bytes of data for the array.
Total number of chunks.

The number of chunks that have been initialized with
some data.

Number of dimensions.

Shortcut for orthogonal (outer) indexing,
see get_orthogonal_selection() and
set_orthogonal_selection() for documen-
tation and examples.

A string indicating the order in which bytes are ar-
ranged within chunks of the array.

Storage path.

A boolean, True if modification operations are not
permitted.

A tuple of integers describing the length of each di-
mension of the array.

The total number of elements in the array.

A MutableMapping providing the underlying storage
for the array.

Object used to synchronize write access to the array.
Shortcut for vectorized (inner) index-

ing, see get_coordinate_selection(),
set_coordinate_selection(),
get_mask_selection() and

set_mask_selection() for documentation
and examples.

A Boolean, True if chunks composed of the array's
fill value will be stored.

3.2. The Array class (zarr.core)

41

Zarr-Python, Release 2.17.1

Methods Summary

append (datal[, axis])
astype(dtype)

digest([hashname])
get_basic_selection([selection, out, fields])
get_block_selection(selection[, out, fields])

get_coordinate_selection(selection[, out, ...])

get_mask_selection(selection[, out, fields])

get_orthogonal_selection(selection[, out, ...])

hexdigest([hashname])
info_items()

islice([start, end])
resize(*args)

set_basic_selection(selection, value[, fields])
set_block_selection(selection, value[, fields])

set_coordinate_selection(selection, value[,

n)

set_mask_selection(selection, value[, fields])

set_orthogonal_selection(selection, value[,

)]
view([shape, chunks, dtype, fill_value, ...])

Append data to axis.

Returns a view that does on the fly type conversion of
the underlying data.

Compute a checksum for the data.

Retrieve data for an item or region of the array.
Retrieve a selection of individual chunk blocks, by
providing the indices (coordinates) for each chunk
block.

Retrieve a selection of individual items, by providing
the indices (coordinates) for each selected item.
Retrieve a selection of individual items, by providing
a Boolean array of the same shape as the array against
which the selection is being made, where True values
indicate a selected item.

Retrieve data by making a selection for each dimen-
sion of the array.

Compute a checksum for the data.

Yield a generator for iterating over the entire or parts
of the array.

Change the shape of the array by growing or shrink-
ing one or more dimensions.

Modify data for an item or region of the array.
Moditfy a selection of individual blocks, by providing
the chunk indices (coordinates) for each block to be
modified.

Modity a selection of individual items, by providing
the indices (coordinates) for each item to be modified.
Modify a selection of individual items, by providing
a Boolean array of the same shape as the array against
which the selection is being made, where True values
indicate a selected item.

Modify data via a selection for each dimension of the
array.

Return an array sharing the same data.

Attributes Documentation

attrs

A MutableMapping containing user-defined attributes. Note that attribute values must be JSON serializ-

able.

basename

Final component of name.

blocks

Shortcut for blocked chunked indexing, see get_block_selection() and set_block_selection()

for documentation and examples.

42

Chapter 3. API reference

Zarr-Python, Release 2.17.1

cdata_shape

A tuple of integers describing the number of chunks along each dimension of the array.
chunk_store
A MutableMapping providing the underlying storage for array chunks.
chunks
A tuple of integers describing the length of each dimension of a chunk of the array.
compressor
Primary compression codec.
dtype
The NumPy data type.
fill_value
A value used for uninitialized portions of the array.
filters
One or more codecs used to transform data prior to compression.
info

Report some diagnostic information about the array.

Examples

>>> import zarr

>>> z = zarr.zeros(1000000, chunks=100000, dtype='i4d')
>>> z.info

Type : zarr.core.Array

Data type : int32

Shape : (1000000,)

Chunk shape : (100000,)

Order : C

Read-only : False

Compressor : Blosc(cname="1z4"', clevel=5, shuffle=SHUFFLE, blocksize=0)
Store type : zarr.storage.KVStore

No. bytes : 4000000 (3.8M)

No. bytes stored : 320

Storage ratio : 12500.0

Chunks initialized : 0/10

initialized

The number of chunks that have been initialized with some data.
is_view

A boolean, True if this array is a view on another array.
itemsize

The size in bytes of each item in the array.

meta_array

An array-like instance to use for determining arrays to create and return to users.

3.2. The Array class (zarr.core) 43

Zarr-Python, Release 2.17.1

name
Array name following hSpy convention.
nbytes
The total number of bytes that would be required to store the array without compression.

nbytes_stored

The total number of stored bytes of data for the array. This includes storage required for configuration
metadata and user attributes.

nchunks
Total number of chunks.
nchunks_initialized
The number of chunks that have been initialized with some data.
ndim
Number of dimensions.
oindex

Shortcut for orthogonal (outer) indexing, see get_orthogonal_selection() and
set_orthogonal_selection() for documentation and examples.

order

A string indicating the order in which bytes are arranged within chunks of the array.
path

Storage path.
read_only

A boolean, True if modification operations are not permitted.
shape

A tuple of integers describing the length of each dimension of the array.
size

The total number of elements in the array.
store

A MutableMapping providing the underlying storage for the array.
synchronizer

Object used to synchronize write access to the array.
vindex

Shortcut for vectorized (inner) indexing, see get_coordinate_selection(),
set_coordinate_selection(), get_mask_selection() and set_mask_selection() for docu-
mentation and examples.

write_empty_chunks

A Boolean, True if chunks composed of the array’s fill value will be stored. If False, such chunks will not
be stored.

44 Chapter 3. API reference

Zarr-Python, Release 2.17.1

Methods Documentation

append (data, axis=0)
Append data to axis.

Parameters

data
[array-like] Data to be appended.

axis
[int] Axis along which to append.

Returns

new_shape
[tuple]

Notes

The size of all dimensions other than axis must match between this array and data.

Examples

>>> import numpy as np

>>> import zarr

>>> a = np.arange(10000000, dtype='i4').reshape(10000, 1000)
>>> z = zarr.array(a, chunks=(1000, 100))
>>> z.shape

(10000, 1000)

>>> z.append(a)

(20000, 1000)

>>> z.append(np.vstack([a, a]), axis=1)
(20000, 2000)

>>> z.shape

(20000, 2000)

astype (dtype)
Returns a view that does on the fly type conversion of the underlying data.

Parameters

dtype
[string or dtype] NumPy dtype.

See also:

Array.view

3.2.

The Array class (zarr.core)

45

Zarr-Python, Release 2.17.1

Notes

This method returns a new Array object which is a view on the same underlying chunk data. Modifying
any data via the view is currently not permitted and will result in an error. This is an experimental feature

and its behavior is subject to change in the future.

Examples
>>> import zarr
>>> import numpy as np
>>> data = np.arange(100, dtype=np.uint8)
>>> a = zarr.array(data, chunks=10)
>>> al:]
array([©®, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99], dtype=uint8)
>>> v = a.astype(np.float32)
>>> v.is_view
True
>>> vi[:]
array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
1., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
20., 21., 22., 23., 24., 25., 26., 27., 28., 29.,
30., 31., 32., 33., 34., 35., 36., 37., 38., 39.,
40., 41., 42., 43., 44., 45., 46., 47., 48., 49.,
50., 51., 52., 53., 54., 55., 56., 57., 58., 59.,
60., 61., 62., 63., 64., 65., 66., 67., 68., 69.,
79., 71., 72., 73., 74., 75., 76., 77., 78., 79.,
8¢., 81., 82., 83., 84., 85., 86., 87., 88., 89.,
90., 91., 92., 93., 94., 95., 96., 97., 98., 99.],
dtype=float32)
digest (hashname='shal")
Compute a checksum for the data. Default uses shal for speed.
Examples
>>> import binascii
>>> import zarr
>>> z = zarr.empty(shape=(10000, 10000), chunks=(1000, 1000))
>>> binascii.hexlify(z.digest())
b'041f90bc7a571452af4f850a8ca2c6cddfa8alac’
>>> z = zarr.zeros(shape=(10000, 10000), chunks=(1000, 1000))

>>> binascii.hexlify(z.digest())
b'7162d416d26a68063b66ed1f30e0a866e4abed60’
>>> z = zarr.zeros(shape=(10000,

10000), dtype="ul", chunks=(1000,

1000))

(continues on next page)

46

Chapter 3. API reference

Zarr-Python, Release 2.17.1

(continued from previous page)

>>> binascii.hexlify(z.digest())
b'cb387af37410ae5a3222e893cf3373e4e4£22816"'

get_basic_selection(selection=Ellipsis, out=None, fields=None)
Retrieve data for an item or region of the array.

Parameters

selection
[tuple] A tuple specifying the requested item or region for each dimension of the array.
May be any combination of int and/or slice for multidimensional arrays.

out
[ndarray, optional] If given, load the selected data directly into this array.

fields
[str or sequence of str, optional] For arrays with a structured dtype, one or more fields can
be specified to extract data for.

Returns

out
[ndarray] A NumPy array containing the data for the requested region.

See also:
set_basic_selection, get_mask_selection, set_mask_selection
get_coordinate_selection, set_coordinate_selection, get_orthogonal_selection

set_orthogonal_selection, get_block_selection, set_block_selection
vindex, oindex, blocks, __getitem__, __setitem__

Notes

Slices with step > 1 are supported, but slices with negative step are not.

Currently this method provides the implementation for accessing data via the square bracket notation
(__getitem__). See __getitem__() for examples using the alternative notation.

Examples

Setup a 1-dimensional array:

>>> import zarr
>>> import numpy as np
>>> z = zarr.array(np.arange(100))

Retrieve a single item:

>>> z.get_basic_selection(5)
5

Retrieve a region via slicing:

3.2. The Array class (zarr.core) 47

Zarr-Python, Release 2.17.1

>>> z.get_basic_selection(slice(5))

array([®, 1, 2, 3, 4])

>>> z.get_basic_selection(slice(-5, None))
array([95, 96, 97, 98, 99])

>>> z.get_basic_selection(slice(5, 10))
array([5, 6, 7, 8, 9])

>>> z.get_basic_selection(slice(5, 10, 2))
array([5, 7, 9])

>>> z.get_basic_selection(slice(None, None, 2))
array([O, 2, 4, ..., 94, 96, 98])

Setup a 2-dimensional array:

[>>> z = zarr.array(np.arange(100) .reshape(10, 10))]

Retrieve an item:

>>> z.get_basic_selection((2, 2))
22

Retrieve a region via slicing:

>>> z.get_basic_selection((slice(l, 3), slice(l, 3)))
array([[11, 127,

[21, 22]11)
>>> z.get_basic_selection((slice(l, 3), slice(None)))
array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],

[20, 21, 22, 23, 24, 25, 26, 27, 28, 29]]1)
>>> z.get_basic_selection((slice(None), slice(l, 3)))
array([[1, 2],

[11, 127,

[21, 227,

[31, 32],

[41, 42],

[51, 52],

[61, 62],

[71, 72],

[81, 82],

[91, 92]11)
>>> z.get_basic_selection((slice(®, 5, 2), slice(®, 5, 2)))
array([[®, 2, 4],

[20, 22, 24],

[40, 42, 44]1])
>>> z.get_basic_selection((slice(None, None, 2), slice(None, None, 2)))
array([[®, 2, 4, 6, 8],

[20, 22, 24, 26, 28],

[40, 42, 44, 46, 48],

[60, 62, 64, 66, 68],

[80, 82, 84, 86, 88]1)

For arrays with a structured dtype, specific fields can be retrieved, e.g.:

>>> a = np.array([(b'aaa', 1, 4.2),
(b'bbb', 2, 8.4),

(continues on next page)

48

Chapter 3. API reference

Zarr-Python, Release 2.17.1

(continued from previous page)
(b'ccc', 3, 12.6)],
e dtype=[('foo', 'S3"'), ('bar', 'i4'), ('baz', '£8')])
>>> z = zarr.array(a)
>>> z.get_basic_selection(slice(2), fields='foo")
array([b'aaa', b'bbb'],
dtype="|S3")

get_block_selection(selection, out=None, fields=None)

Retrieve a selection of individual chunk blocks, by providing the indices (coordinates) for each chunk block.
Parameters

selection
[tuple] An integer (coordinate) or slice for each dimension of the array.

out
[ndarray, optional] If given, load the selected data directly into this array.

fields
[str or sequence of str, optional] For arrays with a structured dtype, one or more fields can
be specified to extract data for.

Returns

out
[ndarray] A NumPy array containing the data for the requested selection.

See also:
get_basic_selection, set_basic_selection, get_mask_selection, set_mask_selection
get_orthogonal_selection, set_orthogonal_selection, get_coordinate_selection

set_coordinate_selection, set_block_selection
vindex, oindex, blocks, __getitem__, __setitem__

Notes

Block indexing is a convenience indexing method to work on individual chunks with chunk index slicing.
It has the same concept as Dask’s Array.blocks indexing.

Slices are supported. However, only with a step size of one.

Block index arrays may be multidimensional to index multidimensional arrays. For example:

>>> z.blocks[0, 1:3]

array([[3, 4, 5, 6, 7, 8],
[13, 14, 15, 16, 17, 18],
[23, 24, 25, 26, 27, 28]])

3.2. The Array class (zarr.core) 49

Zarr-Python, Release 2.17.1

Examples

Setup a 2-dimensional array:

>>> import zarr
>>> import numpy as np
>>> z = zarr.array(np.arange(100).reshape(10, 10), chunks=(3, 3))

Retrieve items by specifying their block coordinates:

>>> z.get_block_selection((l, slice(None)))

array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 5911

Which is equivalent to:

>>> z[3:6, :]

array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59]1)

For convenience, the block selection functionality is also available via the blocks property, e.g.:

>>> z.blocks[1]

array([[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])

get_coordinate_selection(selection, out=None, fields=None)

Retrieve a selection of individual items, by providing the indices (coordinates) for each selected item.
Parameters

selection
[tuple] An integer (coordinate) array for each dimension of the array.

out
[ndarray, optional] If given, load the selected data directly into this array.

fields
[str or sequence of str, optional] For arrays with a structured dtype, one or more fields can
be specified to extract data for.

Returns

out
[ndarray] A NumPy array containing the data for the requested selection.

See also:

get_basic_selection, set_basic_selection, get_mask_selection, set_mask_selection
get_orthogonal_selection, set_orthogonal_selection, set_coordinate_selection
get_block_selection, set_block_selection

vindex, oindex, blocks, __getitem__, __setitem__

50

Chapter 3. API reference

Zarr-Python, Release 2.17.1

Notes

Coordinate indexing is also known as point selection, and is a form of vectorized or inner indexing.
Slices are not supported. Coordinate arrays must be provided for all dimensions of the array.

Coordinate arrays may be multidimensional, in which case the output array will also be multidimensional.
Coordinate arrays are broadcast against each other before being applied. The shape of the output will be
the same as the shape of each coordinate array after broadcasting.

Examples

Setup a 2-dimensional array:

>>> import zarr
>>> import numpy as np
>>> z = zarr.array(np.arange(100) .reshape(10, 10))

Retrieve items by specifying their coordinates:

>>> z.get_coordinate_selection(([1, 4], [1, 41))
array([11, 44])

For convenience, the coordinate selection functionality is also available via the vindex property, e.g.:

>>> z.vindex[[1, 4], [1, 4]1]
array([11, 44])

get_mask_selection(selection, out=None, fields=None)
Retrieve a selection of individual items, by providing a Boolean array of the same shape as the array against
which the selection is being made, where True values indicate a selected item.

Parameters

selection
[ndarray, bool] A Boolean array of the same shape as the array against which the selection
is being made.

out
[ndarray, optional] If given, load the selected data directly into this array.

fields
[str or sequence of str, optional] For arrays with a structured dtype, one or more fields can
be specified to extract data for.

Returns

out
[ndarray] A NumPy array containing the data for the requested selection.

See also:

get_basic_selection, set_basic_selection, set_mask_selection
get_orthogonal_selection, set_orthogonal_selection, get_coordinate_selection
set_coordinate_selection, get_block_selection, set_block_selection

vindex, oindex, blocks, __getitem__, __setitem__

3.2. The Array class (zarr.core) 51

Zarr-Python, Release 2.17.1

Notes

Mask indexing is a form of vectorized or inner indexing, and is equivalent to coordinate indexing. Internally
the mask array is converted to coordinate arrays by calling np.nonzero.

Examples

Setup a 2-dimensional array:

>>> import zarr
>>> import numpy as np
>>> z = zarr.array(np.arange(100) .reshape(10, 10))

Retrieve items by specifying a mask:

>>> sel = np.zeros_like(z, dtype=bool)
>>> sel[1, 1] = True

>>> sel[4, 4] = True

>>> z.get_mask_selection(sel)
array([11, 441)

For convenience, the mask selection functionality is also available via the vindex property, e.g.:

>>> z.vindex[sel]
array([11, 441)

get_orthogonal_selection(selection, out=None, fields=None)

Retrieve data by making a selection for each dimension of the array. For example, if an array has 2 dimen-
sions, allows selecting specific rows and/or columns. The selection for each dimension can be either an
integer (indexing a single item), a slice, an array of integers, or a Boolean array where True values indicate
a selection.

Parameters

selection
[tuple] A selection for each dimension of the array. May be any combination of int, slice,
integer array or Boolean array.

out
[ndarray, optional] If given, load the selected data directly into this array.

fields
[str or sequence of str, optional] For arrays with a structured dtype, one or more fields can
be specified to extract data for.

Returns

out
[ndarray] A NumPy array containing the data for the requested selection.

See also:

get_basic_selection, set_basic_selection, get_mask_selection, set_mask_selection
get_coordinate_selection, set_coordinate_selection, set_orthogonal_selection
get_block_selection, set_block_selection

vindex, oindex, blocks, __getitem__, __setitem__

52

Chapter 3. API reference

Zarr-Python, Release 2.17.1

Notes

Orthogonal indexing is also known as outer indexing.

Slices with step > 1 are supported, but slices with negative step are not.

Examples

Setup a 2-dimensional array:

>>> import zarr
>>> import numpy as np
>>> z = zarr.array(np.arange(100) .reshape(10, 10))

Retrieve rows and columns via any combination of int, slice, integer array and/or Boolean array:

>>> z.get_orthogonal_selection(([1, 4], slice(None)))
array([[16, 11, 12, 13, 14, 15, 16, 17, 18, 19],

[40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])
>>> z.get_orthogonal_selection((slice(None), [1, 4]))
array([[1, 4],

[11, 14],
[21, 24],
[31, 34],
[41, 44],
[51, 54],
[61, 64],
[71, 74],
[81, 84],
[91, 9411)

>>> z.get_orthogonal_selection(([1, 4], [1, 4]1))
array([[11, 147,
[41, 4411
>>> sel = np.zeros(z.shape[0], dtype=bool)
>>> sel[1] = True
>>> sel[4] = True
>>> z.get_orthogonal_selection((sel, sel))
array([[11, 14],
[41, 4411

For convenience, the orthogonal selection functionality is also available via the oindex property, e.g.:

>>> z.oindex[[1, 4], :]

array([[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49]1])

>>> z.oindex[:, [1, 4]1]

array([[1, 4],

[11, 14],
[21, 24],
[31, 34],
[41, 44],
[51, 54],
[61, 64],
[71, 74],

(continues on next page)

3.2. The Array class (zarr.core) 53

Zarr-Python, Release 2.17.1

(continued from previous page)

[81, 84],

[91, 9411)
>>> z.oindex[[1, 4], [1, 4]1]
array([[11, 147,

[41, 44]11)
>>> sel = np.zeros(z.shape[0], dtype=bool)
>>> sel[1] = True
>>> sel[4] = True
>>> z.oindex[sel, sel]
array([[11, 14],

[41, 4411)

hexdigest (hashname="shal")

Compute a checksum for the data. Default uses shal for speed.

Examples

>>> import zarr

>>> z = zarr.empty(shape=(10000, 10000), chunks=(1000, 1000))

>>> z.hexdigest()

'041£90bc7a571452af4£f850a8ca2c6cddfa8alac’

>>> z = zarr.zeros(shape=(10000, 10000), chunks=(1000, 1000))

>>> z.hexdigest()

'7162d416d26a68063b66ed1f30e®a866e4abed60’

>>> z = zarr.zeros(shape=(10000, 10000), dtype="ul", chunks=(1000, 1000))
>>> z.hexdigest()

'cb387af37410ae5a3222e893cf3373e4e4£22816"

info_items()

islice(start=None, end=None)

Yield a generator for iterating over the entire or parts of the array. Uses a cache so chunks only have to be
decompressed once.

Parameters

start
[int, optional] Start index for the generator to start at. Defaults to 0.

end
[int, optional] End index for the generator to stop at. Defaults to self.shape[0].

Yields

out
[generator] A generator that can be used to iterate over the requested region the array.

54 Chapter 3. API reference

Zarr-Python, Release 2.17.1

Examples

Setup a 1-dimensional array:

>>> import zarr
>>> import numpy as np
>>> z = zarr.array(np.arange(100))

Iterate over part of the array:

>>> for value in z.islice(25, 30): value;
25
26
27
28
29

resize(*args)

Change the shape of the array by growing or shrinking one or more dimensions.

Notes

When resizing an array, the data are not rearranged in any way.

If one or more dimensions are shrunk, any chunks falling outside the new array shape will be deleted from
the underlying store. However, it is noteworthy that the chunks partially falling inside the new array (i.e.
boundary chunks) will remain intact, and therefore, the data falling outside the new array but inside the
boundary chunks would be restored by a subsequent resize operation that grows the array size.

Examples

>>> import zarr

>>> z = zarr.zeros(shape=(10000, 10000), chunks=(1000, 1000))
>>> z.shape

(10000, 10000)

>>> z.resize (20000, 10000)

>>> z.shape

(20000, 10000)

>>> z.resize (30000, 1000)

>>> z.shape

(30000, 1000)

set_basic_selection(selection, value, fields=None)

Modify data for an item or region of the array.
Parameters

selection
[tuple] An integer index or slice or tuple of int/slice specifying the requested region for
each dimension of the array.

value
[scalar or array-like] Value to be stored into the array.

3.2. The Array class (zarr.core) 55

Zarr-Python, Release 2.17.1

fields

[str or sequence of str, optional] For arrays with a structured dtype, one or more fields can

be specified to set data for.

See also:

get_basic_selection, get_mask_selection, set_mask_selection

get_coordinate_selection, set_coordinate_selection, get_orthogonal_selection
set_orthogonal_selection, get_block_selection, set_block_selection

vindex, oindex, blocks, __getitem__, __setitem__

Notes

This method provides the underlying implementation for modifying data via square bracket notation, see

__setitem__() for equivalent examples using the alternative notation.

Examples

Setup a 1-dimensional array:

>>> import zarr
>>> import numpy as np
>>> z = zarr.zeros(100, dtype=int)

Set all array elements to the same scalar value:

>>> z.set_basic_selection(..., 42)
>>> z[...]
array([42, 42, 42, ..., 42, 42, 42])

Set a portion of the array:

>>> z.set_basic_selection(slice(10), np.arange(10))

>>> z.set_basic_selection(slice(-10, None), np.arange(10)[::-1])

>>> z[...]
array([0, 1, 2, ..., 2, 1, 0D

Setup a 2-dimensional array:

[>>> z = zarr.zeros((5, 5), dtype=int)

Set all array elements to the same scalar value:

[>>> z.set_basic_selection(..., 42)

Set a portion of the array:

>>> z[...]

array([[®, 1, 2, 3, 4],
[1, 42, 42, 42, 42],
[2, 42, 42, 42, 42],

>>> z.set_basic_selection((®, slice(None)), np.arange(z.shape[1]))
>>> z.set_basic_selection((slice(None), 0), np.arange(z.shape[0]))

(continues on next page)

56

Chapter 3. API reference

Zarr-Python, Release 2.17.1

(continued from previous page)
[3, 42, 42, 42, 42],
[4, 42, 42, 42, 42]])

For arrays with a structured dtype, the fields parameter can be used to set data for a specific field, e.g.:

>>> a = np.array([(b'aaa', 1, 4.2),
(b'bbb', 2, 8.4),
(b'ccc', 3, 12.6)1,
. dtype=[('foo', 'S3"), ('bar', 'i4'), ('baz', '£8')])
>>> z = zarr.array(a)
>>> z.set_basic_selection(slice(®, 2), b'zzz', fields='"foo')
>>> z[:]
array([(b'zzz', 1, 4.2), (b'zzz', 2, 8.4), (b'ccc', 3, 12.6)1,
dtype=[('foo', 'S3'), ('bar', '<i4'), ('baz', '<f8')])

set_block_selection(selection, value, fields=None)
Modify a selection of individual blocks, by providing the chunk indices (coordinates) for each block to be
modified.
Parameters

selection
[tuple] An integer (coordinate) or slice for each dimension of the array.

value
[scalar or array-like] Value to be stored into the array.

fields

[str or sequence of str, optional] For arrays with a structured dtype, one or more fields can
be specified to set data for.

See also:

get_basic_selection, set_basic_selection, get_mask_selection, set_mask_selection
get_orthogonal_selection, set_orthogonal_selection, get_coordinate_selection
get_block_selection, set_block_selection

vindex, oindex, blocks, __getitem__, __setitem__

3.2. The Array class (zarr.core) 57

Zarr-Python, Release 2.17.1

Notes

Block indexing is a convenience indexing method to work on individual chunks with chunk index slicing.
It has the same concept as Dask’s Array.blocks indexing.

Slices are supported. However, only with a step size of one.

Examples

Set up a 2-dimensional array:

>>> import zarr
>>> import numpy as np
>>> z = zarr.zeros((6, 6), dtype=int, chunks=2)

Set data for a selection of items:

>>> z.set_block_selection((1l, 0), 1)

>>> z[...]

array([[®, 0, 0, 0, 0, 0],
[6, 0, O, O, 0, O],
[1, 1, 0, 0, 0, O],
[1, 1, 0, O, 0, O],
[0, O, 0, 0, O, O],
[0, O, 0, 0, 0, 0]])

For convenience, this functionality is also available via the blocks property. E.g.:

>>> z.blocks[2, 1] = 4

>>> z[...]

array([[0, O, 0, 0, 0, 0],
[6, 0, O, O, 0, O],
[1, 1, 0, 0, O, O],
[1, 1, 0, O, 0, O],
[0, 0, 4, 4, 0, 0],
[0, 0, 4, 4, 0, 0]])

>>> z.blocks[:, 2] = 7

>>> z[...]

array([[0, 0, O, O, 7, 7],
[6, 0, O, O, 7, 7],
[1, 1, 0, O, 7, 71,
[1, 1, 0, O, 7, 7],
[0, ®, 4, 4, 7, 7],
[0, O, 4, 4, 7, 711

set_coordinate_selection(selection, value, fields=None)

Modify a selection of individual items, by providing the indices (coordinates) for each item to be modified.
Parameters

selection
[tuple] An integer (coordinate) array for each dimension of the array.

value
[scalar or array-like] Value to be stored into the array.

58

Chapter 3. API reference

Zarr-Python, Release 2.17.1

fields
[str or sequence of str, optional] For arrays with a structured dtype, one or more fields can
be specified to set data for.

See also:
get_basic_selection, set_basic_selection, get_mask_selection, set_mask_selection
get_orthogonal_selection, set_orthogonal_selection, get_coordinate_selection

get_block_selection, set_block_selection
vindex, oindex, blocks, __getitem__, __setitem__

Notes

Coordinate indexing is also known as point selection, and is a form of vectorized or inner indexing.
Slices are not supported. Coordinate arrays must be provided for all dimensions of the array.
Examples

Setup a 2-dimensional array:

>>> import zarr
>>> import numpy as np
>>> z = zarr.zeros((5, 5), dtype=int)

Set data for a selection of items:

>>> z.set_coordinate_selection(([1, 4], [1, 4]1), 1)

>>> z[...]

array([[®, O, 0, 0, 0],
[6, 1, 0, 0, O],
[0, 0, 0, 0, 0],
[0, ®, 0, 0, O],
[0, 0, 0, 0, 111D

For convenience, this functionality is also available via the vindex property. E.g.:

>>> z.vindex[[1, 4], [1, 4]1] = 2

>>> z[...]

array([[®, O, 0, 0, 0],
[6, 2, 0, 0, 0],
[0, 0, 0, 0, 0],
[6, ®, 0, 0, 0],
[0, 0, 0, 0, 2]1])

set_mask_selection(selection, value, fields=None)
Modify a selection of individual items, by providing a Boolean array of the same shape as the array against
which the selection is being made, where True values indicate a selected item.

Parameters

selection
[ndarray, bool] A Boolean array of the same shape as the array against which the selection
is being made.

3.2.

The Array class (zarr.core) 59

Zarr-Python, Release 2.17.1

value
[scalar or array-like] Value to be stored into the array.

fields
[str or sequence of str, optional] For arrays with a structured dtype, one or more fields can
be specified to set data for.

See also:
get_basic_selection, set_basic_selection, get_mask_selection
get_orthogonal_selection, set_orthogonal_selection, get_coordinate_selection

set_coordinate_selection, get_block_selection, set_block_selection
vindex, oindex, blocks, __getitem__, __setitem__

Notes

Mask indexing is a form of vectorized or inner indexing, and is equivalent to coordinate indexing. Internally
the mask array is converted to coordinate arrays by calling np.nonzero.

Examples

Setup a 2-dimensional array:

>>> import zarr
>>> import numpy as np
>>> z = zarr.zeros((5, 5), dtype=int)

Set data for a selection of items:

>>> sel = np.zeros_like(z, dtype=bool)
>>> sel[1l, 1] = True

>>> sel[4, 4] = True

>>> z.set_mask_selection(sel, 1)

>>> z[...]

array([[6, 0, O, O, 0],
[6, 1, 0, 0, O],
[0, ®, 0, 0, 0],
[6, 0, 0, 0, 0],
[0, 0, 0, 0, 111D

For convenience, this functionality is also available via the vindex property. E.g.:

>>> z.vindex[sel] = 2

>>> z[...]

array([[6, 0, O, O, 0],
[6, 2, 0, 0, 0],
[0, 0, 0, 0, 0],
[6, 0, 0, 0, 0],
[0, 0, 0, 0, 2]1])

set_orthogonal_selection(selection, value, fields=None)

Modify data via a selection for each dimension of the array.

Parameters

60 Chapter 3. API reference

Zarr-Python, Release 2.17.1

selection
[tuple] A selection for each dimension of the array. May be any combination of int, slice,
integer array or Boolean array.

value
[scalar or array-like] Value to be stored into the array.

fields
[str or sequence of str, optional] For arrays with a structured dtype, one or more fields can
be specified to set data for.

See also:
get_basic_selection, set_basic_selection, get_mask_selection, set_mask_selection
get_coordinate_selection, set_coordinate_selection, get_orthogonal_selection

get_block_selection, set_block_selection
vindex, oindex, blocks, __getitem__, __setitem__

Notes

Orthogonal indexing is also known as outer indexing.

Slices with step > 1 are supported, but slices with negative step are not.
Examples

Setup a 2-dimensional array:

>>> import zarr
>>> import numpy as np
>>> z = zarr.zeros((5, 5), dtype=int)

Set data for a selection of rows:

>>> z.set_orthogonal_selection(([1, 4], slice(None)), 1)

>>> z[...]

array([[®, O, 0, 0, 0],
[1, 1, 1, 1, 11,
[6, 0, 0, 0, 0],
[6, 0, 0, 0, O],
[1, 1, 1, 1, 11D

Set data for a selection of columns:

>>> z.set_orthogonal_selection((slice(None), [1, 4]1), 2)

>>> z[...]

array([[®, 2, 0, 0, 2],
[1, 2, 1, 1, 21,
[6, 2, 0, 0, 2],
[6, 2, 0, 0, 2],
[1, 2, 1, 1, 21D

Set data for a selection of rows and columns:

3.2. The Array class (zarr.core) 61

Zarr-Python, Release 2.17.1

>>> z.set_orthogonal_selection(([1, 4], [1, 41), 3)
>>> z[...]
array([[0, 2, O, 0, 2],

[, 3, 1, 1, 3],

[0, 2, 0, 0, 2],

[0, 2, 0, 0, 2],

[1, 3, 1, 1, 31D

For convenience, this functionality is also available via the oindex property. E.g.:

>>> z.oindex[[1, 4], [1, 4]] = 4
>>> z[...]
array([[0, 2, O, 0, 2],

[1, 4, 1, 1, 4],

[6, 2, 0, 0, 2],

[6, 2, 0, 0, 2],

[1, 4, 1, 1, 41D

view(shape=None, chunks=None, dtype=None, fill_value=None, filters=None, read_only=None,
synchronizer=None)

Return an array sharing the same data.

Parameters

shape
[int or tuple of ints] Array shape.

chunks
[int or tuple of ints, optional] Chunk shape.

dtype
[string or dtype, optional] NumPy dtype.

fill_value
[object] Default value to use for uninitialized portions of the array.

filters
[sequence, optional] Sequence of filters to use to encode chunk data prior to compression.

read_only
[bool, optional] True if array should be protected against modification.

synchronizer
[object, optional] Array synchronizer.

Notes

WARNING: This is an experimental feature and should be used with care. There are plenty of ways to
generate errors and/or cause data corruption.

62 Chapter 3. API reference

Zarr-Python, Release 2.17.1

Examples

Bypass filters:

>>> import zarr

>>> import numpy as np

>>> np.random.seed(42)

>>> labels = ['female', 'male']

>>> data = np.random.choice(labels, size=10000)

>>> filters = [zarr.Categorize(labels=1labels,
dtype=data.dtype,

A astype='ul')]

>>> a = zarr.array(data, chunks=1000, filters=filters)

>>> al:]

array(['female', 'male', 'female', ..., 'male', 'male', 'female'],

dtype="<U6")

>>> v = a.view(dtype='ul', filters=[])

>>> v.is_view

True

>>> vi[:]

array([1, 2, 1, ..., 2, 2, 1], dtype=uint8)

Views can be used to modify data:

>>> x = v[:]
>>> x.sort()
>>> v[:] = x

>>> v[:]

array([1l, 1, 1, ..., 2, 2, 2], dtype=uint8)

>>> al:]

array(['female', 'female', 'female', ..., 'male', 'male', 'male'],
dtype="<U6")

View as a different dtype with the same item size:

>>> data = np.random.randint(®, 2, size=10000, dtype='ul')
>>> a = zarr.array(data, chunks=1000)

>>> al:]

array([®, O, 1, ..., 1, 0, 0], dtype=uint8)

>>> v = a.view(dtype=bool)

>>> vi[:]

array([False, False, True, ..., True, False, False])
>>> np.all(a[:].view(dtype=bool) == v[:])

True

An array can be viewed with a dtype with a different item size, however some care is needed to adjust the
shape and chunk shape so that chunk data is interpreted correctly:

>>> data = np.arange(10000, dtype='u2')

>>> a = zarr.array(data, chunks=1000)

>>> a[:10]

array([®, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint16)
>>> v = a.view(dtype='ul', shape=20000, chunks=2000)
>>> v[:10]

(continues on next page)

3.2. The Array class (zarr.core) 63

Zarr-Python, Release 2.17.1

(continued from previous page)
array([0, 0, 1, 0, 2, O, 3, 0, 4, 0], dtype=uint8)
>>> np.all(a[:].view('ul') == v[:])
True

Change fill value for uninitialized chunks:

>>> a = zarr.full(10000, chunks=1000, fill value=-1, dtype='il")

>>> al:]

array([-1, -1, -1, ..., -1, -1, -1], dtype=int8)
>>> v = a.view(£fill_value=42)

>>> vi[:]

array([42, 42, 42, ..., 42, 42, 42], dtype=int8)

Note that resizing or appending to views is not permitted:

>>> a = zarr.empty(10000)
>>> v = a.view(Q)
>>> try:
v.resize(20000)
. except PermissionError as e:
print(e)
operation not permitted for views

3.3 Groups (zarr.hierarchy)

zarr.hierarchy.group (store=None, overwrite=False, chunk_store=None, cache_attrs=True,
synchronizer=None, path=None, *, zarr_version=None, meta_array=None)

Create a group.
Parameters

store
[MutableMapping or string, optional] Store or path to directory in file system.

overwrite
[bool, optional] If True, delete any pre-existing data in store at path before creating the group.

chunk_store
[MutableMapping, optional] Separate storage for chunks. If not provided, store will be used
for storage of both chunks and metadata.

cache_attrs
[bool, optional] If True (default), user attributes will be cached for attribute read operations.
If False, user attributes are reloaded from the store prior to all attribute read operations.

synchronizer
[object, optional] Array synchronizer.

path
[string, optional] Group path within store.

meta_array
[array-like, optional] An array instance to use for determining arrays to create and return to
users. Use numpy.empty(()) by default.

64 Chapter 3. API reference

Zarr-Python, Release 2.17.1

New in version 2.16.1.

Returns

8
[zarr.hierarchy.Group]

Examples

Create a group in memory:

-

>>> import zarr

>>> g = zarr.group()

>>> ¢
<zarr.hierarchy.Group '/'>

Create a group with a different store:

>>> store = zarr.DirectoryStore('data/example.zarr')
>>> g = zarr.group(store=store, overwrite=True)

>>> ¢

<zarr.hierarchy.Group '/'>

L

zarr.hierarchy.open_group (store=None, mode='a’, cache_attrs=True, synchronizer=None, path=None,
chunk_store=None, storage_options=None, *, zarr_version=None,
meta_array=None)

Open a group using file-mode-like semantics.
Parameters

store
[MutableMapping or string, optional] Store or path to directory in file system or name of zip
file.

mode
[{‘r, ‘r+’, ‘@, ‘W’, ‘w-‘}, optional] Persistence mode: ‘r’ means read only (must exist); ‘r+’
means read/write (must exist); ‘a’ means read/write (create if doesn’t exist); ‘w’ means create
(overwrite if exists); ‘w-’ means create (fail if exists).

cache_attrs
[bool, optional] If True (default), user attributes will be cached for attribute read operations.
If False, user attributes are reloaded from the store prior to all attribute read operations.

synchronizer
[object, optional] Array synchronizer.

path
[string, optional] Group path within store.

chunk_store
[MutableMapping or string, optional] Store or path to directory in file system or name of zip
file.

storage_options
[dict] If using an fsspec URL to create the store, these will be passed to the backend imple-
mentation. Ignored otherwise.

3.3. Groups (zarr.hierarchy) 65

Zarr-Python, Release 2.17.1

meta_array
[array-like, optional] An array instance to use for determining arrays to create and return to
users. Use numpy.empty(()) by default.

New in version 2.13.

Returns

g
[zarr.hierarchy.Group]

Examples

>>> import zarr

>>> root = zarr.open_group('data/example.zarr', mode="w')
>>> foo = root.create_group('foo')

>>> bar = root.create_group('bar"')

>>> root

<zarr.hierarchy.Group '/'>

>>> root2 = zarr.open_group('data/example.zarr', mode="a'")

>>> root2
<zarr.hierarchy.Group '/'>
>>> root == root2

True

L

class zarr.hierarchy.Group(store, path=None, read_only=False, chunk_store=None, cache_attrs=True,
synchronizer=None, zarr_version=None, *, meta_array=None)

Instantiate a group from an initialized store.
Parameters

store

[MutableMapping] Group store, already initialized. If the Group is used in a context man-
ager, and the store has a close method, it will be called on exit.

path
[string, optional] Group path.

read_only
[bool, optional] True if group should be protected against modification.

chunk_store
[MutableMapping, optional] Separate storage for chunks. If not provided, store will be used
for storage of both chunks and metadata.

cache_attrs
[bool, optional] If True (default), user attributes will be cached for attribute read operations.
If False, user attributes are reloaded from the store prior to all attribute read operations.

synchronizer
[object, optional] Array synchronizer.

meta_array
[array-like, optional] An array instance to use for determining arrays to create and return to
users. Use numpy.empty(()) by default.

New in version 2.13.

Attributes

66 Chapter 3. API reference

Zarr-Python, Release 2.17.1

store

A MutableMapping providing the underlying storage for the group.

path
Storage path.

name

Group name following hSpy convention.

read_only

A boolean, True if modification operations are not permitted.

chunk_store

A MutableMapping providing the underlying storage for array chunks.

synchronizer

Object used to synchronize write access to groups and arrays.

attrs

A MutableMapping containing user-defined attributes.

info

Return diagnostic information about the group.

meta_array

An array-like instance to use for determining arrays to create and return to users.

Methods
__len__() Number of members.
__iter__() Return an iterator over group member names.

__contains__(item)
__getitem__(item)

__enter__()

__exit__(exc_type, exc_val, exc_tb)
group_keys()

groups()

array_keys([recurse])
arrays([recurse])

visit(func)

visitkeys(func)
visitvalues(func)
visititems(func)

tree([expand, level])
create_group(name[, overwrite])
require_group(name[, overwrite])
create_groups(*names, **kwargs)

require_groups(*names)

create_dataset(name, **kwargs)

require_dataset(name, shape[, dtype, exact])

Test for group membership.

Obtain a group member.

Return the Group for use as a context manager.

Call the close method of the underlying Store.
Return an iterator over member names for groups
only.

Return an iterator over (name, value) pairs for groups
only.

Return an iterator over member names for arrays only.
Return an iterator over (name, value) pairs for arrays
only.

Run func on each object's path.

An alias for visit().

Run func on each object.

Run func on each object's path and the object itself.
Provide a print-able display of the hierarchy.
Create a sub-group.

Obtain a sub-group, creating one if it doesn't exist.
Convenience method to create multiple groups in a
single call.

Convenience method to require multiple groups in a
single call.

Create an array.

Obtain an array, creating if it doesn't exist.

continues on next page

3.3. Groups (zarr.hierarchy)

67

Zarr-Python, Release 2.17.1

Table 2 - continued from previous page

create(name, **kwargs)
empty(name, **kwargs)
zeros(name, **kwargs)
ones(name, **kwargs)

full(name, fill_value, **kwargs)
array(name, data, **kwargs)
empty_1like(name, data, **kwargs)
zeros_like(name, data, **kwargs)
ones_1like(name, data, **kwargs)
full_like(name, data, **kwargs)
info

move(source, dest)

Create an array.
Create an array.
Create an array.
Create an array.
Create an array.
Create an array.
Create an array.
Create an array.
Create an array.
Create an array.

Return diagnostic information about the group.
Move contents from one path to another relative to

the Group.

_len__0O

Number of members.

__iter__0O

Return an iterator over group member names.

Examples

>>> import zarr
>>> gl = zarr.group()

>>> g3
>>> dl

>>> for name in gl:
.. print (name)
bar
baz
foo
quux

>>> g2 = gl.create_group('foo')
gl.create_group('bar"')
gl.create_dataset('baz', shape=100, chunks=10)
>>> d2 = gl.create_dataset('quux', shape=200, chunks=20)

__contains__(item)

Test for group membership.

Examples

>>> import zarr

>>> gl = zarr.group()
>>> g2 = gl.create_group('foo")
>>> dl =

>>> 'foo' in gl

True

>>> 'bar' in g1

True

>>> 'baz' in g1
False

gl.create_dataset('bar', shape=100, chunks=10)

68

Chapter 3. API reference

Zarr-Python, Release 2.17.1

__getitem__(item)

Obtain a group member.
Parameters

item
[string] Member name or path.

Examples

>>> import zarr

>>> gl = zarr.group()

>>> dl = gl.create_dataset('foo/bar/baz', shape=100, chunks=10)
>>> gl['foo']

<zarr.hierarchy.Group '/foo'>

>>> g1['foo/bar']

<zarr.hierarchy.Group '/foo/bar'>

>>> gl['foo/bar/baz']

<zarr.core.Array '/foo/bar/baz' (100,) float64>

__enter__Q
Return the Group for use as a context manager.

__exit__(exc_type, exc_val, exc_tb)

Call the close method of the underlying Store.

group_keys()
Return an iterator over member names for groups only.

Examples

>>> import zarr

>>> gl = zarr.group()

>>> g2 = gl.create_group('foo")

>>> g3 = gl.create_group('bar"')

>>> dl = gl.create_dataset('baz', shape=100, chunks=10)

>>> d2 = gl.create_dataset('quux', shape=200, chunks=20)
>>> sorted(gl.group_keys())
['bar', 'foo']

groups O
Return an iterator over (name, value) pairs for groups only.

3.3.

Groups (zarr.hierarchy)

69

Zarr-Python, Release 2.17.1

Examples

>>> import zarr

>>> gl = zarr.group()

>>> g2 = gl.create_group('foo")

>>> g3 = gl.create_group('bar")

>>> dl gl.create_dataset('baz', shape=100, chunks=10)
>>> d2 = gl.create_dataset('quux', shape=200, chunks=20)
>>> for n, v in gl.groups():

- print(n, type(v))

bar <class 'zarr.hierarchy.Group'>

foo <class 'zarr.hierarchy.Group'>

array_keys (recurse=False)

Return an iterator over member names for arrays only.
Parameters

recurse
[recurse, optional] Option to return member names for all arrays, even from groups be-
low the current one. If False, only member names for arrays in the current group will be
returned. Default value is False.

Examples

>>> import zarr

>>> gl = zarr.group()

>>> g2 = gl.create_group('foo")

>>> g3 = gl.create_group('bar")

>>> dl = gl.create_dataset('baz', shape=100, chunks=10)
>>> d2 = gl.create_dataset('quux', shape=200, chunks=20)
>>> sorted(gl.array_keys())

['baz', 'quux']

arrays (recurse=False)
Return an iterator over (name, value) pairs for arrays only.

Parameters

recurse
[recurse, optional] Option to return (name, value) pairs for all arrays, even from groups
below the current one. If False, only (name, value) pairs for arrays in the current group
will be returned. Default value is False.

70 Chapter 3. API reference

Zarr-Python, Release 2.17.1

Examples

>>> import zarr

>>> gl = zarr.group()

>>> g2 = gl.create_group('foo")

>>> g3 = gl.create_group('bar"')

>>> dl = gl.create_dataset('baz', shape=100, chunks=10)

>>> d2 = gl.create_dataset('quux', shape=200, chunks=20)
>>> for n, v in gl.arraysQ:

- print(n, type(v))

baz <class 'zarr.core.Array'>

quux <class 'zarr.core.Array'>

visit (func)
Run func on each object’s path.

Note: If func returns None (or doesn’t return),
iteration continues. However, if func returns anything else, it ceases and returns that value.

Examples

>>> import zarr

>>> gl zarr.group()

>>> g2 = gl.create_group('foo")
>>> g3 = gl.create_group('bar")
>>> g4 = g3.create_group('baz')
>>> g5 = g3.create_group('quux")
>>> def print_visitor(name):
I print (name)

>>> gl.visit(print_visitor)

bar

bar/baz

bar/quux

foo

>>> g3.visit(print_visitor)

baz

quux

Search for members matching some name query can be implemented using visit that is, find and
findall. Consider the following tree:

/

It is created as follows:

>>> root = zarr.group()
>>> foo = root.create_group('foo")

(continues on next page)

3.3. Groups (zarr.hierarchy) 71

Zarr-Python, Release 2.17.1

(continued from previous page)

>>> bar = root.create_group('bar")

>>> root.create_group('aaa").create_group('bbb").create_group('‘ccc').create_
—group(aaa")

<zarr.hierarchy.Group '/aaa/bbb/ccc/aaa'>

For find, the first path that matches a given pattern (for example “aaa”) is returned. Note that a non-None
value is returned in the visit function to stop further iteration.

>>> import re
>>> pattern = re.compile("aaa")
>>> found = None
>>> def find(path):
global found
if pattern.search(path) is not None:
found = path
return True

>>> root.visit(find)
True

>>> print (found)

aaa

For findall, all the results are gathered into a list

>>> pattern = re.compile("aaa")
>>> found = []
>>> def findall(path):
if pattern.search(path) is not None:
found. append(path)

>>> root.visit(findall)
>>> print (found)
['aaa', 'aaa/bbb', 'aaa/bbb/ccc', 'aaa/bbb/ccc/aaa']

To match only on the last part of the path, use a greedy regex to filter out the prefix:

>>> prefix_pattern = re.compile(r".*/")
>>> pattern = re.compile("aaa")
>>> found = []
>>> def findall(path):
match = prefix_pattern.match(path)
if match is None:
name = path
else:
_, end = match.span()
name = path[end:]
if pattern.search(name) is not None:
found. append (path)
return None

>>> root.visit(findall)
>>> print (found)
['aaa', 'aaa/bbb/ccc/aaa']

72

Chapter 3. API reference

Zarr-Python, Release 2.17.1

visitkeys (func)

An alias for visit ().

visitvalues (func)

Run func on each object.

Note: If func returns None (or doesn’t return),
iteration continues. However, if func returns anything else, it ceases and returns that value.

Examples

>>> import zarr
>>> gl = zarr.group()

>>> g2 = gl.create_group('foo")
>>> g3 = gl.create_group('bar"')
>>> g4 = g3.create_group('baz"')

>>> g5 = g3.create_group('quux')
>>> def print_visitor(obj):

- print(obj)

>>> gl.visitvalues(print_visitor)
<zarr.hierarchy.Group '/bar'>
<zarr.hierarchy.Group '/bar/baz'>
<zarr.hierarchy.Group '/bar/quux'>
<zarr.hierarchy.Group '/foo'>

>>> g3.visitvalues(print_visitor)
<zarr.hierarchy.Group '/bar/baz'>
<zarr.hierarchy.Group '/bar/quux'>

visititems (func)
Run func on each object’s path and the object itself.

Note: If func returns None (or doesn’t return),
iteration continues. However, if func returns anything else, it ceases and returns that value.

Examples

>>> import zarr
>>> gl = zarr.group()

>>> g2 = gl.create_group('foo')
>>> g3 = gl.create_group('bar')
>>> g4 = g3.create_group('baz")

>>> g5 = g3.create_group('quux')
>>> def print_visitor(name, obj):

print((name, obj))
>>> gl.visititems(print_visitor)
('bar', <zarr.hierarchy.Group '/bar'>)
('bar/baz', <zarr.hierarchy.Group '/bar/baz'>)
('bar/quux', <zarr.hierarchy.Group '/bar/quux'>)
('"foo', <zarr.hierarchy.Group '/foo'>)
>>> g3.visititems(print_visitor)
('baz', <zarr.hierarchy.Group '/bar/baz'>)
('quux', <zarr.hierarchy.Group '/bar/quux'>)

3.3. Groups (zarr.hierarchy) 73

Zarr-Python, Release 2.17.1

tree(expand=False, level=None)
Provide a print-able display of the hierarchy.

Parameters

expand
[bool, optional] Only relevant for HTML representation. If True, tree will be fully ex-
panded.

level
[int, optional] Maximum depth to descend into hierarchy.

Notes

Please note that this is an experimental feature. The behaviour of this function is still evolving and the
default output and/or parameters may change in future versions.

Examples

>>> import zarr
>>> gl = zarr.group()
>>> g2 = gl.create_group('foo')
>>> g3 = gl.create_group('bar"')
>>> g4 = g3.create_group('baz")
>>> g5 = g3.create_group('quux')
>>> dl = ¢g5.create_dataset('baz', shape=100, chunks=10)
>>> gl.tree()
/
— bar
baz
quux
L— baz (100,) float64
L— foo
>>> gl.tree(level=2)
/
— bar
baz
quux
L— foo
>>> g3.tree()
bar
— baz
L— quux
L— baz (100,) float64

create_group (name, overwrite=False)

Create a sub-group.
Parameters

name
[string] Group name.

overwrite
[bool, optional] If True, overwrite any existing array with the given name.

74 Chapter 3. API reference

Zarr-Python, Release 2.17.1

Returns

4
[zarr.hierarchy.Group]

Examples

>>> import zarr

>>> gl = zarr.group()

>>> g2 = gl.create_group('foo')

>>> g3 = gl.create_group('bar"')

>>> g4 = gl.create_group('baz/quux')

require_group (name, overwrite=False)
Obtain a sub-group, creating one if it doesn’t exist.

Parameters

name
[string] Group name.

overwrite
[bool, optional] Overwrite any existing array with given name if present.

Returns

g
[zarr.hierarchy.Group]

Examples

>>> import zarr

>>> gl = zarr.group()

>>> g2 = gl.require_group('foo")
>>> g3 = gl.require_group('foo")
>>> g2 == g3

True

create_groups (*names, **kwargs)
Convenience method to create multiple groups in a single call.

require_groups (*names)
Convenience method to require multiple groups in a single call.
create_dataset (name, **kwargs)

Create an array.

Arrays are known as “datasets” in HDF5 terminology. For compatibility with hSpy, Zarr groups also im-
plement the require_dataset() method.

Parameters

name
[string] Array name.

data
[array-like, optional] Initial data.

3.3.

Groups (zarr.hierarchy) 75

Zarr-Python, Release 2.17.1

shape
[int or tuple of ints] Array shape.

chunks
[int or tuple of ints, optional] Chunk shape. If not provided, will be guessed from shape
and dtype.

dtype
[string or dtype, optional] NumPy dtype.

compressor
[Codec, optional] Primary compressor.

fill_value
[object] Default value to use for uninitialized portions of the array.

order
[{‘C’, ‘F’}, optional] Memory layout to be used within each chunk.

synchronizer
[zarr.sync.ArraySynchronizer, optional] Array synchronizer.

filters
[sequence of Codecs, optional] Sequence of filters to use to encode chunk data prior to
compression.

overwrite
[bool, optional] If True, replace any existing array or group with the given name.

cache_metadata
[bool, optional] If True, array configuration metadata will be cached for the lifetime of the
object. If False, array metadata will be reloaded prior to all data access and modification
operations (may incur overhead depending on storage and data access pattern).

dimension_separator
[{<’, ¢/}, optional] Separator placed between the dimensions of a chunk.

Returns

a
[zarr.core.Array]

Examples

>>> import zarr

>>> gl = zarr.group()

>>> dl = gl.create_dataset('foo', shape=(10000, 10000),
- chunks=(1000, 1000))

>>> d1
<zarr.core.Array '/foo' (10000, 10000) float64>

>>> d2 = gl.create_dataset('bar/baz/qux', shape=(100, 100, 100),
- chunks=(100, 10, 10))

>>> d2
<zarr.core.Array '/bar/baz/qux' (100, 100, 100) float64>

require_dataset (name, shape, dtype=None, exact=False, **kwargs)
Obtain an array, creating if it doesn’t exist.

76 Chapter 3. API reference

Zarr-Python, Release 2.17.1

Arrays are known as “datasets” in HDF5 terminology. For compatibility with hSpy, Zarr groups also im-

plement the create_dataset() method.

Other kwargs are as per zarr.hierarchy.Group.create_dataset().

Parameters

name
[string] Array name.

shape
[int or tuple of ints] Array shape.

dtype

[string or dtype, optional] NumPy dtype.

exact
[bool, optional] If True, require dtype
from array dtype.

create (name, **kwargs)

Create an array. Keyword arguments as per zarr.

empty (name, **kwargs)

Create an array. Keyword arguments as per zarr.

zeros (name, **kwargs)

Create an array. Keyword arguments as per zarr.

ones (name, **kwargs)

Create an array. Keyword arguments as per zarr.

full (name, fill_value, **kwargs)

Create an array. Keyword arguments as per zarr.

array (name, data, **kwargs)

Create an array. Keyword arguments as per zarr.

empty_like (name, data, **kwargs)

Create an array. Keyword arguments as per zarr.

zeros_like (name, data, **kwargs)

Create an array. Keyword arguments as per zarr.

ones_like (name, data, **kwargs)

Create an array. Keyword arguments as per zarr.

full_like (name, data, **kwargs)
Create an array. Keyword arguments as per zarr

move (source, dest)

to match exactly. If false, require dtype can be cast

creation.create().

creation.empty().

creation. zeros().

creation.ones().

creation. full().

creation.array().

creation.empty_like().

creation.zeros_like().

creation.ones_like().

.creation.full_like().

Move contents from one path to another relative to the Group.

Parameters

source
[string] Name or path to a Zarr object

dest
[string] New name or path of the Zarr

to move.

object.

3.3.

Groups (zarr.hierarchy)

77

Zarr-Python, Release 2.17.1

3.4 Storage (zarr.storage)

This module contains storage classes for use with Zarr arrays and groups.

Note that any object implementing the MutableMapping interface from the collections module in the Python stan-
dard library can be used as a Zarr array store, as long as it accepts string (str) keys and bytes values.

In addition to the MutableMapping interface, store classes may also implement optional methods /listdir (list members
of a “directory”) and rmdir (remove all members of a “directory”). These methods should be implemented if the store
class is aware of the hierarchical organisation of resources within the store and can provide efficient implementations.
If these methods are not available, Zarr will fall back to slower implementations that work via the MutableMapping
interface. Store classes may also optionally implement a rename method (rename all members under a given path) and
a getsize method (return the size in bytes of a given value).

class zarr.storage.MemoryStore (root=None, cls=<class 'dict'>, dimension_separator=None)

Store class that uses a hierarchy of KVStore objects, thus all data will be held in main memory.

Notes

Safe to write in multiple threads.

Examples

This is the default class used when creating a group. E.g.:

>>> import zarr

>>> g = zarr.group()

>>> type(g.store)

<class 'zarr.storage.MemoryStore'>

Note that the default class when creating an array is the built-in KVStore class, i.e.:

>>> z = zarr.zeros(100)
>>> type(z.store)
<class 'zarr.storage.KVStore'>

class zarr.storage.DirectoryStore(path, normalize_keys=False, dimension_separator: Literal['', /'] | None
= None)

Storage class using directories and files on a standard file system.
Parameters

path
[string] Location of directory to use as the root of the storage hierarchy.

normalize_keys
[bool, optional] If True, all store keys will be normalized to use lower case characters (e.g.
‘foo’ and ‘FOO’ will be treated as equivalent). This can be useful to avoid potential discrep-
ancies between case-sensitive and case-insensitive file system. Default value is False.

dimension_separator
[{*’, */’}, optional] Separator placed between the dimensions of a chunk.

78 Chapter 3. API reference

https://docs.python.org/3/library/collections.html#module-collections
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

Notes
Atomic writes are used, which means that data are first written to a temporary file, then moved into place when

the write is successfully completed. Files are only held open while they are being read or written and are closed
immediately afterwards, so there is no need to manually close any files.

Safe to write in multiple threads or processes.

Examples

Store a single array:

>>> import zarr

>>> store = zarr.DirectoryStore('data/array.zarr')

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
>>> z[...] = 42

L

Each chunk of the array is stored as a separate file on the file system, i.e.:

(

>>> import os
>>> sorted(os.listdir('data/array.zarr'))
['.zarray', '0.0', '0.1', '1.0', '1.1']

Store a group:

>>> store = zarr.DirectoryStore('data/group.zarr')

>>> root = zarr.group(store=store, overwrite=True)

>>> foo = root.create_group('foo')

>>> bar foo.zeros('bar', shape=(10, 10), chunks=(5, 5))
>>> bar[...] = 42

When storing a group, levels in the group hierarchy will correspond to directories on the file system, i.e.:

>>> sorted(os.listdir('data/group.zarr'))
['.zgroup', 'foo']

>>> sorted(os.listdir('data/group.zarr/foo'))
['.zgroup', 'bar']

>>> sorted(os.listdir('data/group.zarr/foo/bar'))
['.zarray', '6.0', '0.1', '"1.0", '1.1']

class zarr.storage.TempStore (suffix=", prefix="zarr', dir=None, normalize_keys=False,

dimension_separator: Literal['", /'] | None = None)
Directory store using a temporary directory for storage.
Parameters

suffix
[string, optional] Suffix for the temporary directory name.

prefix
[string, optional] Prefix for the temporary directory name.
dir
[string, optional] Path to parent directory in which to create temporary directory.

normalize_keys
[bool, optional] If True, all store keys will be normalized to use lower case characters (e.g.

3.4.

Storage (zarr.storage) 79

https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

‘foo’ and ‘FOO’ will be treated as equivalent). This can be useful to avoid potential discrep-
ancies between case-sensitive and case-insensitive file system. Default value is False.

dimension_separator
[{°., °/"}, optional] Separator placed between the dimensions of a chunk.

class zarr.storage.NestedDirectoryStore (path, normalize_keys=False, dimension_separator: Literal['.',
7'l | None ="7")
Storage class using directories and files on a standard file system, with special handling for chunk keys so that
chunk files for multidimensional arrays are stored in a nested directory tree.

Parameters

path
[string] Location of directory to use as the root of the storage hierarchy.

normalize_keys
[bool, optional] If True, all store keys will be normalized to use lower case characters (e.g.
‘foo’ and ‘FOO’ will be treated as equivalent). This can be useful to avoid potential discrep-
ancies between case-sensitive and case-insensitive file system. Default value is False.

dimension_separator
[{°/}, optional] Separator placed between the dimensions of a chunk. Only supports “/”
unlike other implementations.

Notes

The DirectoryStore class stores all chunk files for an array together in a single directory. On some
file systems, the potentially large number of files in a single directory can cause performance issues. The
NestedDirectoryStore class provides an alternative where chunk files for multidimensional arrays will be
organised into a directory hierarchy, thus reducing the number of files in any one directory.

Safe to write in multiple threads or processes.

Examples

Store a single array:

>>> import zarr

>>> store = zarr.NestedDirectoryStore('data/array.zarr')

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
>>> z[...] = 42

Each chunk of the array is stored as a separate file on the file system, note the multiple directory levels used for
the chunk files:

>>> import os

>>> sorted(os.listdir('data/array.zarr'))
['.zarray', '0', '1']

>>> sorted(os.listdir('data/array.zarr/0'))

[l@l , 1 1l]
>>> sorted(os.listdir('data/array.zarr/1'))
[l@l , L} 1']

Store a group:

80 Chapter 3. API reference

https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

>>> store = zarr.NestedDirectoryStore('data/group.zarr")
>>> root = zarr.group(store=store, overwrite=True)

>>> foo = root.create_group('foo')

>>> bar foo.zeros('bar', shape=(10, 10), chunks=(5, 5))
>>> bar[...] = 42

When storing a group, levels in the group hierarchy will correspond to directories on the file system, i.e.:

>>> sorted(os.listdir('data/group.zarr'))
['.zgroup', 'foo']

>>> sorted(os.listdir('data/group.zarr/foo'))
['.zgroup', 'bar'l]

>>> sorted(os.listdir('data/group.zarr/foo/bar'))
['.zarray', '0', "1']

>>> sorted(os.listdir('data/group.zarr/foo/bar/0"'))

[10' , L} 1']
>>> sorted(os.listdir('data/group.zarr/foo/bar/1'))
[l@l , 1 1I]

class zarr.storage.ZipStore(path, compression=0, allowZip64=True, mode='a', dimension_separator:
Literal[".", /'] | None = None)

Storage class using a Zip file.
Parameters

path
[string] Location of file.

compression
[integer, optional] Compression method to use when writing to the archive.

allowZip64
[bool, optional] If True (the default) will create ZIP files that use the ZIP64 extensions when
the zipfile is larger than 2 GiB. If False will raise an exception when the ZIP file would require
Z1P64 extensions.

mode
[string, optional] One of ‘r’ to read an existing file, ‘w’ to truncate and write a new file, ‘a’
to append to an existing file, or ‘x’ to exclusively create and write a new file.

dimension_separator
[{‘’, °/’}, optional] Separator placed between the dimensions of a chunk.

Notes

Each chunk of an array is stored as a separate entry in the Zip file. Note that Zip files do not provide any way to
remove or replace existing entries. If an attempt is made to replace an entry, then a warning is generated by the
Python standard library about a duplicate Zip file entry. This can be triggered if you attempt to write data to a
Zarr array more than once, e.g.:

>>> store = zarr.ZipStore('data/example.zip', mode='w')
>>> z = zarr.zeros(100, chunks=10, store=store)
>>> # first write OK
z[..] = 42
>>> # second write generates warnings

(continues on next page)

3.4. Storage (zarr.storage) 81

https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

(continued from previous page)

. z[...] = 42
>>> store.close()

This can also happen in a more subtle situation, where data are written only once to a Zarr array, but the write
operations are not aligned with chunk boundaries, e.g.:

>>> store = zarr.ZipStore('data/example.zip', mode='w')

>>> z = zarr.zeros(100, chunks=10, store=store)

>>> z[5:15] = 42

>>> # write overlaps chunk previously written, generates warnings
. z[15:25] = 42

To avoid creating duplicate entries, only write data once, and align writes with chunk boundaries. This alignment
is done automatically if you call z[...] = ... or create an array from existing data via zarr.array().

Alternatively, use a DirectoryStore when writing the data, then manually Zip the directory and use the Zip
file for subsequent reads. Take note that the files in the Zip file must be relative to the root of the Zarr archive.
You may find it easier to create such a Zip file with 7z, e.g.:

[72 a -tzip archive.zarr.zip archive.zarr/.

Safe to write in multiple threads but not in multiple processes.

Examples

Store a single array:

r

>>> import zarr

>>> store = zarr.ZipStore('data/array.zip', mode='w')

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store)

>>> z[...] = 42

>>> store.close() # don't forget to call this when you're done

Store a group:

>>> store = zarr.ZipStore('data/group.zip', mode='w')

>>> root = zarr.group(store=store)

>>> foo = root.create_group('foo')

>>> bar = foo.zeros('bar', shape=(10, 10), chunks=(5, 5))

>>> bar[...] = 42

>>> store.close() # don't forget to call this when you're done

After modifying a ZipStore, the close() method must be called, otherwise essential data will not be written
to the underlying Zip file. The ZipStore class also supports the context manager protocol, which ensures the
close () method is called on leaving the context, e.g.:

>>> with zarr.ZipStore('data/array.zip', mode='w') as store:
z = zarr.zeros((10, 10), chunks=(5, 5), store=store)
z[...] = 42
no need to call store.close()

close()
Closes the underlying zip file, ensuring all records are written.

82 Chapter 3. API reference

Zarr-Python, Release 2.17.1

flush(O

Closes the underlying zip file, ensuring all records are written, then re-opens the file for further modifica-
tions.

class zarr.storage.DBMStore(path, flag='c', mode=438, open=None, write_lock=True, dimension_separator:
Literal[".", /'] | None = None, **open_kwargs)
Storage class using a DBM-style database.

Parameters

path
[string] Location of database file.

flag
[string, optional] Flags for opening the database file.

mode
[int] File mode used if a new file is created.

open
[function, optional] Function to open the database file. If not provided, dbm.open() will be
used on Python 3, and anydbm.open() will be used on Python 2.

write_lock: bool, optional
Use a lock to prevent concurrent writes from multiple threads (True by default).

dimension_separator
[{*’, °/’}, optional] Separator placed between the dimensions of a chunk.e

**open_kwargs
Keyword arguments to pass the open function.

Notes

Please note that, by default, this class will use the Python standard library dbm.open function to open the database
file (or anydbm.open on Python 2). There are up to three different implementations of DBM-style databases
available in any Python installation, and which one is used may vary from one system to another. Database
file formats are not compatible between these different implementations. Also, some implementations are more
efficient than others. In particular, the “dumb” implementation will be the fall-back on many systems, and has
very poor performance for some usage scenarios. If you want to ensure a specific implementation is used, pass
the corresponding open function, e.g., dbm.gnu.open to use the GNU DBM library.

Safe to write in multiple threads. May be safe to write in multiple processes, depending on which DBM imple-
mentation is being used, although this has not been tested.

Examples

Store a single array:

>>> import zarr

>>> store = zarr.DBMStore('data/array.db')

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
>>> z[...] = 42

>>> store.close() # don't forget to call this when you're done

Store a group:

3.4. Storage (zarr.storage) 83

https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/dbm.html#dbm.open

Zarr-Python, Release 2.17.1

-

>>> store = zarr.DBMStore('data/group.db")

>>> root = zarr.group(store=store, overwrite=True)

>>> foo = root.create_group('foo')

>>> bar foo.zeros('bar', shape=(10, 10), chunks=(5, 5))

>>> bar[...] = 42

>>> store.close() # don't forget to call this when you're done

After modifying a DBMStore, the close () method must be called, otherwise essential data may not be written
to the underlying database file. The DBMStore class also supports the context manager protocol, which ensures
the close () method is called on leaving the context, e.g.:

>>> with zarr.DBMStore('data/array.db') as store:
z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
z[...] = 42
no need to call store.close()

A different database library can be used by passing a different function to the open parameter. For example, if
the bsddb3 package is installed, a Berkeley DB database can be used:

>>> import bsddb3

>>> store = zarr.DBMStore('data/array.bdb', open=bsddb3.btopen)

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
>>> z[...] = 42

>>> store.close()

close()
Closes the underlying database file.

flush()
Synchronizes data to the underlying database file.

class zarr.storage.LMDBStore (path, buffers=True, dimension_separator: Literal['', /'] | None = None,
**ewargs)

Storage class using LMDB. Requires the Imdb package to be installed.
Parameters

path
[string] Location of database file.

buffers
[bool, optional] If True (default) use support for buffers, which should increase performance
by reducing memory copies.

dimension_separator
[{‘’, °/’}, optional] Separator placed between the dimensions of a chunk.

**kwargs
Keyword arguments passed through to the Imdb.open function.

84 Chapter 3. API reference

https://www.jcea.es/programacion/pybsddb.htm
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://lmdb.readthedocs.io/

Zarr-Python, Release 2.17.1

Notes

By default writes are not immediately flushed to disk to increase performance. You can ensure data are flushed
to disk by calling the £lush() or close () methods.

Should be safe to write in multiple threads or processes due to the synchronization support within LMDB, al-
though writing from multiple processes has not been tested.

Examples

Store a single array:

>>> import zarr

>>> store = zarr.LMDBStore('data/array.mdb')

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
>>> z[...] = 42

>>> store.close() # don't forget to call this when you're done

.

Store a group:

-

>>> store = zarr.LMDBStore('data/group.mdb"')

>>> root = zarr.group(store=store, overwrite=True)

>>> foo = root.create_group('foo')

>>> bar = foo.zeros('bar', shape=(10, 10), chunks=(5, 5))

>>> bar[...] = 42

>>> store.close() # don't forget to call this when you're done

After modifying a DBMStore, the close () method must be called, otherwise essential data may not be written
to the underlying database file. The DBMStore class also supports the context manager protocol, which ensures
the close () method is called on leaving the context, e.g.:

>>> with zarr.LMDBStore('data/array.mdb') as store:
z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
z[...] = 42
no need to call store.close()

close()
Closes the underlying database.

flush(O

Synchronizes data to the file system.

class zarr.storage.SQLiteStore(path, dimension_separator: Literal[".', /'] | None = None, **kwargs)
Storage class using SQLite.

Parameters

path
[string] Location of database file.

dimension_separator
[{°’, I}, optional] Separator placed between the dimensions of a chunk.

**kwargs
Keyword arguments passed through to the sqlite3.connect function.

3.4. Storage (zarr.storage) 85

https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

Examples

Store a single array:

-

>>> import zarr

>>> store = zarr.SQLiteStore('data/array.sqldb")

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
>>> z[...] = 42

>>> store.close() # don't forget to call this when you're done

L

Store a group:

~

>>> store = zarr.SQLiteStore('data/group.sqgldb')

>>> root = zarr.group(store=store, overwrite=True)

>>> foo = root.create_group('foo')

>>> bar = foo.zeros('bar', shape=(10, 10), chunks=(5, 5))

>>> bar[...] = 42

>>> store.close() # don't forget to call this when you're done

close()
Closes the underlying database.

class zarr.storage.MongoDBStore (database="mongodb_zarr', collection="zarr_collection’,
dimension_separator: Literal['", /'] | None = None, **kwargs)

Storage class using MongoDB.

Note: This is an experimental feature.

Requires the pymongo package to be installed.
Parameters

database
[string] Name of database

collection
[string] Name of collection

dimension_separator
[{‘’, °/’}, optional] Separator placed between the dimensions of a chunk.

**kwargs
Keyword arguments passed through to the pymongo.MongoClient function.

Notes

The maximum chunksize in MongoDB documents is 16 MB.

class zarr.storage.RedisStore(prefix="zarr', dimension_separator: Literal['.', /'] | None = None, **kwargs)

Storage class using Redis.

Note: This is an experimental feature.

Requires the redis package to be installed.

86 Chapter 3. API reference

https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://pymongo.readthedocs.io/en/stable/
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://redis-py.readthedocs.io/

Zarr-Python, Release 2.17.1

Parameters

prefix
[string] Name of prefix for Redis keys

dimension_separator
[{°’, "}, optional] Separator placed between the dimensions of a chunk.

**kwargs
Keyword arguments passed through to the redis. Redis function.

class zarr.storage.LRUStoreCache(store: BaseStore | MutableMapping, max_size: int)

Storage class that implements a least-recently-used (LRU) cache layer over some other store. Intended primarily
for use with stores that can be slow to access, e.g., remote stores that require network communication to store
and retrieve data.

Parameters

store
[Store] The store containing the actual data to be cached.

max_size
[int] The maximum size that the cache may grow to, in number of bytes. Provide None if
you would like the cache to have unlimited size.

Examples

The example below wraps an S3 store with an LRU cache:

>>> import s3fs
>>> import zarr
>>> s3 = s3fs.S3FileSystem(anon=True, client_kwargs=dict(region_name='eu-west-2"))
>>> store = s3fs.S3Map(root='zarr-demo/store', s3=s3, check=False)
>>> cache = zarr.LRUStoreCache(store, max_size=2%%28)
>>> root = zarr.group(store=cache)
>>> z = root['foo/bar/baz']
>>> from timeit import timeit
>>> # first data access is relatively slow, retrieved from store
... timeit('print(z[:].tobytes())"', number=1, globals=globals())
b'Hello from the cloud!'
0.1081731989979744
>>> # second data access is faster, uses cache

. timeit('print(z[:].tobytes())', number=1, globals=globals())
b'Hello from the cloud!'
0.0009490990014455747

invalidate()

Completely clear the cache.
invalidate_values()

Clear the values cache.
invalidate_keys()

Clear the keys cache.

class zarr.storage.ABSStore (container=None, prefix=", account_name=None, account_key=None,
blob_service_kwargs=None, dimension_separator: Literal["", /'] | None =
None, client=None)

3.4. Storage (zarr.storage) 87

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

Storage class using Azure Blob Storage (ABS).
Parameters

container
[string] The name of the ABS container to use.

Deprecated since version Use: client instead.

prefix
[string] Location of the “directory” to use as the root of the storage hierarchy within the
container.

account_name
[string] The Azure blob storage account name.

Deprecated since version 2.8.3: Use client instead.

account_key
[string] The Azure blob storage account access key.

Deprecated since version 2.8.3: Use client instead.

blob_service_kwargs
[dictionary] Extra arguments to be passed into the azure blob client, for e.g. when using the
emulator, pass in blob_service_kwargs={ ‘is_emulated’: True}.

Deprecated since version 2.8.3: Use client instead.

dimension_separator
[{’, "}, optional] Separator placed between the dimensions of a chunk.

client
[azure.storage.blob.ContainerClient, optional] And azure.storage.blob.
ContainerClient to connect with. See here # noga for more.

New in version 2.8.3.

Notes

In order to use this store, you must install the Microsoft Azure Storage SDK for Python,
azure-storage-blob>=12.5.0.

class zarr.storage.FSStore (url, normalize_keys=False, key_separator=None, mode="'w', exceptions=(<class
'KeyError'>, <class 'PermissionError'>, <class 'OSError'>),
dimension_separator: ~typing.Literal[".', /'] | None = None, fs=None,
check=False, create=False, missing_exceptions=None, **storage_options)

Wraps an fsspec.FSMap to give access to arbitrary filesystems
Requires that f£sspec is installed, as well as any additional requirements for the protocol chosen.
Parameters

url
[str] The destination to map. If no fs is provided, should include protocol and path, like
“s3://bucket/root”. If an fs is provided, can be a path within that filesystem, like “bucket/root”

normalize_keys
[bool]

88 Chapter 3. API reference

https://docs.microsoft.com/en-us/python/api/azure-storage-blob/azure.storage.blob.containerclient?view=azure-python

Zarr-Python, Release 2.17.1

key_separator
[str] public API for accessing dimension_separator. Never None See dimension_separator
for more information.

mode
[str] “w” for writable, “r” for read-only

exceptions
[list of Exception subclasses] When accessing data, any of these exceptions will be treated
as a missing key

dimension_separator
[{°, "}, optional] Separator placed between the dimensions of a chunk.

fs
[fsspec.spec.AbstractFileSystem, optional] An existing filesystem to use for the store.

check
[bool, optional] If True, performs a touch at the root location, to check for write access.
Passed to fsspec.mapping. FSMap constructor.

create
[bool, optional] If True, performs a mkdir at the rool location. Passed to
fsspec.mapping.FSMap constructor.

missing_exceptions
[sequence of Exceptions, optional] Exceptions classes to associate with missing files. Passed
to fsspec.mapping.FSMap constructor.

storage_options
[passed to the fsspec implementation. Cannot be used] together with fs.

class zarr.storage.ConsolidatedMetadataStore (store: BaseStore | MutableMapping,
metadata_key='".zmetadata")

A layer over other storage, where the metadata has been consolidated into a single key.

The purpose of this class, is to be able to get all of the metadata for a given array in a single read operation
from the underlying storage. See zarr. convenience.consolidate_metadata() for how to create this single
metadata key.

This class loads from the one key, and stores the data in a dict, so that accessing the keys no longer requires
operations on the backend store.

This class is read-only, and attempts to change the array metadata will fail, but changing the data is possible.
If the backend storage is changed directly, then the metadata stored here could become obsolete, and zarr.
convenience.consolidate_metadata() should be called again and the class re-invoked. The use case is for
write once, read many times.

New in version 2.3.

Note: This is an experimental feature.

Parameters

store: Store
Containing the zarr array.

metadata_key: str
The target in the store where all of the metadata are stored. We assume JSON encoding.

3.4. Storage (zarr.storage) 89

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping

Zarr-Python, Release 2.17.1

See also:
zarr.convenience.consolidate_metadata, zarr.convenience.open_consolidated

zarr.storage.init_array(store: BaseStore | MutableMapping, shape: int | Tuple[int, ...], chunks: bool | int |
Tuple[int, ...] = True, dtype=None, compressor='"default', fill_value=None, order: str
= 'C', overwrite: bool = False, path: str | bytes | None = None, chunk_store:
BaseStore | MutableMapping | None = None, filters=None, object_codec=None,
dimension_separator: Literal['", /'] | None = None, storage_transformers=())

Initialize an array store with the given configuration. Note that this is a low-level function and there should be
no need to call this directly from user code.

Parameters

store
[Store] A mapping that supports string keys and bytes-like values.

shape
[int or tuple of ints] Array shape.

chunks
[bool, int or tuple of ints, optional] Chunk shape. If True, will be guessed from shape and
dtype. If False, will be set to shape, i.e., single chunk for the whole array.

dtype
[string or dtype, optional] NumPy dtype.

compressor
[Codec, optional] Primary compressor.

fill_value
[object] Default value to use for uninitialized portions of the array.

order
[{°C’, ‘F’}, optional] Memory layout to be used within each chunk.

overwrite
[bool, optional] If True, erase all data in store prior to initialisation.

path
[string, bytes, optional] Path under which array is stored.

chunk_store
[Store, optional] Separate storage for chunks. If not provided, store will be used for storage
of both chunks and metadata.

filters
[sequence, optional] Sequence of filters to use to encode chunk data prior to compression.

object_codec
[Codec, optional] A codec to encode object arrays, only needed if dtype=object.

dimension_separator
[{°, "}, optional] Separator placed between the dimensions of a chunk.

90 Chapter 3. API reference

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

Notes

The initialisation process involves normalising all array metadata, encoding as JSON and storing under the
‘.zarray’ key.

Examples

Initialize an array store:

>>> from zarr.storage import init_array, KVStore
>>> store = KVStore(dict())
>>> init_array(store, shape=(10000, 10000), chunks=(1000, 1000))
>>> sorted(store.keys())
['.zarray']
Array metadata is stored as JSON:
>>> print(store['.zarray'].decode())
{
"chunks": [
1000,
1000
P
"compressor": {
"blocksize": 0,
"clevel": 5,
"cname": "1z4",
"id": "blosc",
"shuffle": 1
Jre
"dtype": "<£8",
"fill_value": null,
"filters": null,
"order": "C",
"shape": [
10000,
10000
P
"zarr_format": 2
}

Initialize an array using a storage path:

>>> store = KVStore(dict())
>>> init_array(store, shape=100000000, chunks=1000000, dtype='il', path="'foo')
>>> sorted(store.keys())

['.zgroup', 'foo/.zarray']
>>> print(store['foo/.zarray'].decode())
{
"chunks": [
1000000
P

"compressor": {

(continues on next page)

3.4. Storage (zarr.storage) 91

Zarr-Python, Release 2.17.1

(continued from previous page)

"blocksize": 0,
"clevel": 5,
"cname": "1z4",
"id": "blosc",
"shuffle": 1
Jre
"dtype": "|il",
"fill_value": null,
"filters": null,

llorderll: "C"’
"shape": [

100000000
e

"zarr_format": 2

zarr.storage.init_group(store: BaseStore | MutableMapping, overwrite: bool = False, path: str | bytes | None
= None, chunk_store: BaseStore | MutableMapping | None = None)

Initialize a group store. Note that this is a low-level function and there should be no need to call this directly
from user code.

Parameters

store
[Store] A mapping that supports string keys and byte sequence values.

overwrite
[bool, optional] If True, erase all data in store prior to initialisation.

path
[string, optional] Path under which array is stored.

chunk_store
[Store, optional] Separate storage for chunks. If not provided, store will be used for storage

of both chunks and metadata.
zarr.storage.contains_array (store: BaseStore | MutableMapping, path: str | bytes | None = None) — bool
Return True if the store contains an array at the given logical path.
zarr.storage.contains_group (store: BaseStore | MutableMapping, path: str | bytes | None = None,
explicit_only=True) — bool

Return True if the store contains a group at the given logical path.

zarr.storage.listdir (store: BaseStore, path: str| bytes | None = None)
Obtain a directory listing for the given path. If store provides a listdir method, this will be called, otherwise will
fall back to implementation via the MutableMapping interface.

zarr.storage.rmdir (store: BaseStore | MutableMapping, path: str | bytes | None = None)
Remove all items under the given path. If store provides a rmdir method, this will be called, otherwise will fall
back to implementation via the Store interface.

zarr.storage.getsize(store: BaseStore, path: str| bytes | None = None) — int

Compute size of stored items for a given path. If store provides a getsize method, this will be called, otherwise
will return -1.

92 Chapter 3. API reference

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Zarr-Python, Release 2.17.1

zarr.storage.rename (store: Store, src_path: str| bytes | None, dst_path: str| bytes | None)

Rename all items under the given path. If store provides a rename method, this will be called, otherwise will fall
back to implementation via the Store interface.

zarr.storage.migrate_1to2 (store)
Migrate array metadata in store from Zarr format version 1 to version 2.

Parameters

store
[Store] Store to be migrated.

Notes

Version 1 did not support hierarchies, so this migration function will look for a single array in store and migrate
the array metadata to version 2.

3.5 N5 (zarr.n5)

This module contains a storage class and codec to support the N5 format.

class zarr.n5.N5Store(path, normalize_keys=False, dimension_separator: Literal["', /'] | None = /")

Storage class using directories and files on a standard file system, following the N5 format (https://github.com/
saalfeldlab/n5).

Parameters

path
[string] Location of directory to use as the root of the storage hierarchy.

normalize_keys
[bool, optional] If True, all store keys will be normalized to use lower case characters (e.g.
‘foo’ and ‘FOO’ will be treated as equivalent). This can be useful to avoid potential discrep-
ancies between case-sensitive and case-insensitive file system. Default value is False.

Notes

This is an experimental feature.

Safe to write in multiple threads or processes.
Examples

Store a single array:

>>> import zarr

>>> store = zarr.N5Store('data/array.n5")

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
>>> z[...] = 42

Store a group:

3.5. N5 (zarr.n5) 93

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://github.com/saalfeldlab/n5
https://github.com/saalfeldlab/n5

Zarr-Python, Release 2.17.1

>>> store = zarr.N5Store('data/group.n5"')

>>> root = zarr.group(store=store, overwrite=True)

>>> foo = root.create_group('foo')

>>> bar = foo.zeros('bar', shape=(10, 10), chunks=(5, 5))
>>> bar[...] = 42

3.6 Convenience functions (zarr.convenience)

Convenience functions for storing and loading data.

zarr.convenience.open(store: BaseStore | MutableMapping | str | None = None, mode: str ="'a’, *,
zarr_version=None, path=None, **kwargs)

Convenience function to open a group or array using file-mode-like semantics.
Parameters

store
[Store or string, optional] Store or path to directory in file system or name of zip file.

mode
[{‘T, ‘r+’, ‘@, ‘W’, ‘w-‘}, optional] Persistence mode: ‘r’ means read only (must exist); ‘r+’
means read/write (must exist); ‘a’ means read/write (create if doesn’t exist); ‘w’ means create
(overwrite if exists); ‘w-" means create (fail if exists).

zarr_version
[{2, 3, None}, optional] The zarr protocol version to use. The default value of None will
attempt to infer the version from store if possible, otherwise it will fall back to 2.

path
[str or None, optional] The path within the store to open.

**kwargs
Additional parameters are passed through to zarr.creation.open_array() or zarr.
hierarchy.open_group().

Returns

VA
[zarr.core.Array or zarr.hierarchy.Group] Array or group, depending on what ex-
ists in the given store.

See also:

zarr.creation.open_array, zarr.hierarchy.open_group

Examples

Storing data in a directory ‘data/example.zarr’ on the local file system:

>>> import zarr

>>> store = 'data/example.zarr'
>>> zw = zarr.open(store, mode='w', shape=100, dtype='i4') # open new array
>>> ZW

<zarr.core.Array (100,) int32>
>>> za = zarr.open(store, mode='a') # open existing array for reading and writing
(continues on next page)

94 Chapter 3. API reference

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

Zarr-Python, Release 2.17.1

(continued from previous page)

>>> za

<zarr.core.Array (100,) int32>

>>> zr = zarr.open(store, mode='r') # open existing array read-only

>>> zr

<zarr.core.Array (100,) int32 read-only>

>>> gw = zarr.open(store, mode='w') # open new group, overwriting previous data
>>> gw

<zarr.hierarchy.Group '/'>

>>> ga = zarr.open(store, mode='a') # open existing group for reading and writing
>>> ga

<zarr.hierarchy.Group '/'>

>>> gr = zarr.open(store, mode='r') # open existing group read-only

>>> gr

<zarr.hierarchy.Group '/' read-only>

.

zarr.convenience.save(store: BaseStore | MutableMapping | str | None, *args, zarr_version=None, path=None,
**kwargs)

Convenience function to save an array or group of arrays to the local file system.
Parameters

store
[MutableMapping or string] Store or path to directory in file system or name of zip file.

args
[ndarray] NumPy arrays with data to save.

zarr_version
[{2, 3, None}, optional] The zarr protocol version to use when saving. The default value of
None will attempt to infer the version from store if possible, otherwise it will fall back to 2.

path
[str or None, optional] The path within the group where the arrays will be saved.

kwargs
NumPy arrays with data to save.

See also:

save_array, save_group

Examples

Save an array to a directory on the file system (uses a DirectoryStore):

>>> import zarr

>>> import numpy as np

>>> arr = np.arange(10000)

>>> zarr.save('data/example.zarr', arr)

>>> zarr.load('data/example.zarr')

array([O, 1, 2, ..., 9997, 9998, 9999])

L

Save an array to a Zip file (uses a ZipStore):

3.6. Convenience functions (zarr.convenience) 95

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

>>> zarr.save('data/example.zip', arr)
>>> zarr.load('data/example.zip')
array ([0, 1, 2, ..., 9997, 9998, 9999])

Save several arrays to a directory on the file system (uses a DirectoryStore and stores arrays in a group):

>>> import zarr

>>> import numpy as np

>>> al = np.arange(10000)

>>> a2 = np.arange(10000, 0, -1)

>>> zarr.save('data/example.zarr', al, a2)
>>> loader = zarr.load('data/example.zarr')
>>> loader

<LazyLoader: arr_0, arr_1>

>>> loader['arr_0']

array ([0, 1, 2, ..., 9997, 9998, 9999])
>>> loader['arr_1"]
array([10000, 9999, 9998, ..., 3, 2, 1)

.

Save several arrays using named keyword arguments:

-

>>> zarr.save('data/example.zarr', foo=al, bar=a2)
>>> loader = zarr.load('data/example.zarr')

>>> loader

<LazyLoader: bar, foo>

>>> loader['foo']

array([O, 1, 2, ..., 9997, 9998, 9999])
>>> loader['bar']
array([10000, 9999, 9998, ..., 3, 2, 11)

Store several arrays in a single zip file (uses a ZipStore):

>>> zarr.save('data/example.zip', foo=al, bar=a2)
>>> loader = zarr.load('data/example.zip')

>>> loader

<LazyLoader: bar, foo>

>>> loader['foo']

array ([0, 1, 2, ..., 9997, 9998, 9999])
>>> loader['bar']
array([10000, 9999, 9998, ..., 3, 2, 11)

zarr.convenience.load(store: BaseStore | MutableMapping | str | None, zarr_version=None, path=None)

Load data from an array or group into memory.
Parameters

store
[MutableMapping or string] Store or path to directory in file system or name of zip file.

zarr_version
[{2, 3, None}, optional] The zarr protocol version to use when loading. The default value of
None will attempt to infer the version from sfore if possible, otherwise it will fall back to 2.

path
[str or None, optional] The path within the store from which to load.

96 Chapter 3. API reference

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

Returns

out
If the store contains an array, out will be a numpy array. If the store contains a group, out
will be a dict-like object where keys are array names and values are numpy arrays.

See also:

save, savez

Notes
If loading data from a group of arrays, data will not be immediately loaded into memory. Rather, arrays will be
loaded into memory as they are requested.

zarr.convenience.save_array (store: BaseStore | MutableMapping | str | None, arr, *, zarr_version=None,
path=None, **kwargs)

Convenience function to save a NumPy array to the local file system, following a similar API to the NumPy save()
function.

Parameters

store
[MutableMapping or string] Store or path to directory in file system or name of zip file.

arr
[ndarray] NumPy array with data to save.

zarr_version
[{2, 3, None}, optional] The zarr protocol version to use when saving. The default value of
None will attempt to infer the version from store if possible, otherwise it will fall back to 2.

path
[str or None, optional] The path within the store where the array will be saved.

kwargs
Passed through to create(), e.g., compressor.

Examples

Save an array to a directory on the file system (uses a DirectoryStore):

>>> import zarr

>>> import numpy as np

>>> arr = np.arange(10000)

>>> zarr.save_array('data/example.zarr', arr)
>>> zarr.load('data/example.zarr')

array ([0, 1, 2, ..., 9997, 9998, 9999])

Save an array to a single file (uses a ZipStore):

>>> zarr.save_array('data/example.zip', arr)
>>> zarr.load('data/example.zip')
array([0, 1, 2, ..., 9997, 9998, 9999])

3.6. Convenience functions (zarr.convenience) 97

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

zarr.convenience.save_group (store: BaseStore | MutableMapping | str | None, *args, zarr_version=None,
path=None, **kwargs)

Convenience function to save several NumPy arrays to the local file system, following a similar API to the NumPy
savez()/savez_compressed() functions.

Parameters

store
[MutableMapping or string] Store or path to directory in file system or name of zip file.

args
[ndarray] NumPy arrays with data to save.

zarr_version
[{2, 3, None}, optional] The zarr protocol version to use when saving. The default value of
None will attempt to infer the version from sfore if possible, otherwise it will fall back to 2.

path
[str or None, optional] Path within the store where the group will be saved.

kwargs
NumPy arrays with data to save.

Notes

Default compression options will be used.

Examples

Save several arrays to a directory on the file system (uses a DirectoryStore):

>>> import zarr

>>> import numpy as np

>>> al = np.arange(10000)

>>> a2 = np.arange(10000, 0, -1)

>>> zarr.save_group('data/example.zarr', al, a2)
>>> loader = zarr.load('data/example.zarr')

>>> loader

<LazyLoader: arr_0, arr_1>

>>> loader['arr_0']

array([O, 1, 2, ..., 9997, 9998, 9999])
>>> loader['arr_1"]
array([10000, 9999, 9998, ..., 3, 2, D)

L

Save several arrays using named keyword arguments:

-

>>> zarr.save_group('data/example.zarr', foo=al, bar=a2)
>>> loader = zarr.load('data/example.zarr')

>>> loader

<LazyLoader: bar, foo>

>>> loader['foo']

array([O, 1, 2, ..., 9997, 9998, 9999])
>>> loader['bar']
array([10000, 9999, 9998, ..., 3, 2, 11)

.

Store several arrays in a single zip file (uses a ZipStore):

98 Chapter 3. API reference

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

>>> zarr.save_group('data/example.zip', foo=al, bar=a2)
>>> loader = zarr.load('data/example.zip')

>>> loader

<LazyLoader: bar, foo>

>>> loader['foo']

array([O, 1, 2, ..., 9997, 9998, 9999])
>>> loader['bar']
array([10000, 9999, 9998, ..., 3, 2, 1

L

zarr.convenience. copy (source, dest, name=None, shallow=False, without_attrs=False, log=None,
if_exists='raise', dry_run=False, **create_kws)

Copy the source array or group into the dest group.
Parameters

source
[group or array/dataset] A zarr group or array, or an h5py group or dataset.

dest
[group] A zarr or hSpy group.

name
[str, optional] Name to copy the object to.

shallow
[bool, optional] If True, only copy immediate children of source.

without_attrs
[bool, optional] Do not copy user attributes.

log
[callable, file path or file-like object, optional] If provided, will be used to log progress in-
formation.

if_exists
[{‘raise’, ‘replace’, ‘skip’, ‘skip_initialized’}, optional] How to handle arrays that already
exist in the destination group. If ‘raise’ then a CopyError is raised on the first array already
present in the destination group. If ‘replace’ then any array will be replaced in the destination.
If ‘skip’ then any existing arrays will not be copied. If ‘skip_initialized’ then any existing
arrays with all chunks initialized will not be copied (not available when copying to h5py).

dry_run
[bool, optional] If True, don’t actually copy anything, just log what would have happened.

**create_kws
Passed through to the create_dataset method when copying an array/dataset.

Returns

n_copied
[int] Number of items copied.

n_skipped
[int] Number of items skipped.

n_bytes_copied
[int] Number of bytes of data that were actually copied.

3.6. Convenience functions (zarr.convenience) 929

Zarr-Python, Release 2.17.1

Notes

Please note that this is an experimental feature. The behaviour of this function is still evolving and the default
behaviour and/or parameters may change in future versions.

Examples

Here’s an example of copying a group named ‘foo’ from an HDFS file to a Zarr group:

>>> import hS5py

>>> import zarr

>>> import numpy as np

>>> source = hS5py.File('data/example.h5', mode="w")

>>> foo = source.create_group('foo')

>>> baz = foo.create_dataset('bar/baz', data=np.arange(100), chunks=(50,))

>>> spam = source.create_dataset('spam', data=np.arange(100, 200), chunks=(30,))
>>> zarr.tree(source)

/

L bar
L— baz (100,) int64

spam (100,) int64
>>> dest = zarr.group()
>>> from sys import stdout
>>> zarr.copy(source['foo'], dest, log=stdout)
copy /foo
copy /foo/bar
copy /foo/bar/baz (100,) int64
all done: 3 copied, O skipped, 800 bytes copied
(3, 0, 800)
>>> dest.tree() # N.B., no spam

/
L foo

L— bar

L— baz (100,) int64
>>> source.close()

L

The if_exists parameter provides options for how to handle pre-existing data in the destination. Here are some
examples of these options, also using dry_run=True to find out what would happen without actually copying
anything:

>>> source = zarr.group()
>>> dest = zarr.group()
>>> baz = source.create_dataset('foo/bar/baz', data=np.arange(100))
>>> spam = source.create_dataset('foo/spam', data=np.arange(1000))
>>> existing_spam = dest.create_dataset('foo/spam', data=np.arange(1000))
>>> from sys import stdout
>>> try:
zarr.copy(source['foo'], dest, log=stdout, dry_run=True)
. except zarr.CopyError as e:
print(e)

copy /foo

(continues on next page)

100

Chapter 3. API reference

Zarr-Python, Release 2.17.1

(continued from previous page)

copy /foo/bar

copy /foo/bar/baz (100,) int64

an object 'spam' already exists in destination '/foo'

>>> zarr.copy(source['foo'], dest, log=stdout, if_exists='replace', dry_run=True)
copy /foo

copy /foo/bar

copy /foo/bar/baz (100,) int64

copy /foo/spam (1000,) int64

dry run: 4 copied, O skipped

4, 0, 0

>>> zarr.copy(source['foo'], dest, log=stdout, if_exists='skip', dry_run=True)
copy /foo

copy /foo/bar

copy /foo/bar/baz (100,) int64

skip /foo/spam (1000,) int64

dry run: 3 copied, 1 skipped

a3, 1, 0

zarr.

convenience.copy_all (source, dest, shallow=False, without_attrs=False, log=None, if_exists='"raise’,
dry_run=False, **create_kws)

Copy all children of the source group into the dest group.
Parameters

source
[group or array/dataset] A zarr group or array, or an h5py group or dataset.

dest
[group] A zarr or hSpy group.

shallow
[bool, optional] If True, only copy immediate children of source.

without_attrs
[bool, optional] Do not copy user attributes.

log
[callable, file path or file-like object, optional] If provided, will be used to log progress in-
formation.

if_exists
[{‘raise’, ‘replace’, ‘skip’, ‘skip_initialized’}, optional] How to handle arrays that already
exist in the destination group. If ‘raise’ then a CopyError is raised on the first array already
present in the destination group. If ‘replace’ then any array will be replaced in the destination.
If ‘skip’ then any existing arrays will not be copied. If ‘skip_initialized’ then any existing
arrays with all chunks initialized will not be copied (not available when copying to h5py).

dry_run
[bool, optional] If True, don’t actually copy anything, just log what would have happened.

**create_kws
Passed through to the create_dataset method when copying an array/dataset.

Returns

n_copied
[int] Number of items copied.

3.6. Convenience functions (zarr.convenience) 101

Zarr-Python, Release 2.17.1

n_skipped
[int] Number of items skipped.

n_bytes_copied
[int] Number of bytes of data that were actually copied.

Notes

Please note that this is an experimental feature. The behaviour of this function is still evolving and the default
behaviour and/or parameters may change in future versions.

Examples

>>> import hS5py

>>> import zarr

>>> import numpy as np

>>> source = h5py.File('data/example.h5', mode="w")

>>> foo = source.create_group('foo')

>>> baz = foo.create_dataset('bar/baz', data=np.arange(100), chunks=(50,))

>>> spam = source.create_dataset('spam', data=np.arange(100, 200), chunks=(30,))
>>> zarr.tree(source)

/

L bar
L— baz (100,) int64

spam (100,) int64
>>> dest = zarr.group()
>>> import sys
>>> zarr.copy_all(source, dest, log=sys.stdout)
copy /foo
copy /foo/bar
copy /foo/bar/baz (100,) int64
copy /spam (100,) int64
all done: 4 copied, O skipped, 1,600 bytes copied

(4, 0, 1600)
>>> dest.tree()
/

foo

L bar

L— baz (100,) int64
spam (100,) int64
>>> source.close()

zarr.

convenience.copy_store(source, dest, source_path=", dest_path=", excludes=None, includes=None,
flags=0, if _exists="raise', dry_run=False, log=None)

Copy data directly from the source store to the dest store. Use this function when you want to copy a group or

array in the most efficient way, preserving all configuration and attributes. This function is more efficient than the

copy() or copy_all() functions because it avoids de-compressing and re-compressing data, rather the compressed

chunk data for each array are copied directly between stores.

Parameters

source
[Mapping] Store to copy data from.

102

Chapter 3. API reference

Zarr-Python, Release 2.17.1

dest
[MutableMapping] Store to copy data into.

source_path
[str, optional] Only copy data from under this path in the source store.

dest_path
[str, optional] Copy data into this path in the destination store.

excludes
[sequence of str, optional] One or more regular expressions which will be matched against
keys in the source store. Any matching key will not be copied.

includes
[sequence of str, optional] One or more regular expressions which will be matched against
keys in the source store and will override any excludes also matching.

flags
[int, optional] Regular expression flags used for matching excludes and includes.

if_exists
[{‘raise’, ‘replace’, ‘skip’}, optional] How to handle keys that already exist in the destination
store. If ‘raise’ then a CopyError is raised on the first key already present in the destination
store. If ‘replace’ then any data will be replaced in the destination. If ‘skip’ then any existing
keys will not be copied.

dry_run
[bool, optional] If True, don’t actually copy anything, just log what would have happened.

log
[callable, file path or file-like object, optional] If provided, will be used to log progress in-
formation.

Returns

n_copied
[int] Number of items copied.

n_skipped
[int] Number of items skipped.

n_bytes_copied
[int] Number of bytes of data that were actually copied.

Notes

Please note that this is an experimental feature. The behaviour of this function is still evolving and the default
behaviour and/or parameters may change in future versions.

3.6.

Convenience functions (zarr.convenience) 103

Zarr-Python, Release 2.17.1

Examples

r

>>> import zarr

>>> storel = zarr.DirectoryStore('data/example.zarr')

>>> root = zarr.group(storel, overwrite=True)

>>> foo = root.create_group('foo')

>>> bar = foo.create_group('bar')

>>> baz = bar.create_dataset('baz', shape=100, chunks=50, dtype='i8")
>>> import numpy as np

>>> baz[:] = np.arange(100)

>>> root.tree()

/
L— foo

L bar
L— baz (100,) int64

>>> from sys import stdout
>>> store2 = zarr.ZipStore('data/example.zip', mode='w")
>>> zarr.copy_store(storel, store2, log=stdout)
copy .zgroup
copy foo/.zgroup
copy foo/bar/.zgroup
copy foo/bar/baz/.zarray
copy foo/bar/baz/0
copy foo/bar/baz/1
all done: 6 copied, O skipped, 566 bytes copied
(6, 0, 566)
>>> new_root = zarr.group(store2)
>>> new_root.tree()

L— baz (100,) int64
>>> new_root['foo/bar/baz'][:]
array([0, 1, 2, ..., 97, 98, 99D
>>> store2.close() # zip stores need to be closed

zarr.convenience. tree(grp, expand=False, level=None)

Provide a print-able display of the hierarchy. This function is provided mainly as a convenience for obtaining
a tree view of an h5py group - zarr groups have a . tree() method.

Parameters

grp
[Group] Zarr or h5py group.

expand
[bool, optional] Only relevant for HTML representation. If True, tree will be fully expanded.

level
[int, optional] Maximum depth to descend into hierarchy.

See also:

zarr.hierarchy.Group. tree

104 Chapter 3. API reference

Zarr-Python, Release 2.17.1

Notes

Please note that this is an experimental feature. The behaviour of this function is still evolving and the default
output and/or parameters may change in future versions.

Examples

>>> import zarr
>>> gl = zarr.group()
>>> g2 = gl.create_group('foo")
>>> g3 = gl.create_group('bar')
>>> g4 = g3.create_group('baz')
>>> g5 = g3.create_group('qux')
>>> dl = ¢g5.create_dataset('baz', shape=100, chunks=10)
>>> gl.tree()
/
bar
baz
qux
L— baz (100,) float64
foo
>>> import h5py
>>> h5f = hSpy.File('data/example.h5', mode="w")
>>> zarr.copy_all(gl, h5f)

(5, 0, 800)
>>> zarr.tree(h5f)
/
bar
baz
qux
L— baz (100,) float64
foo

L

zarr.convenience.consolidate_metadata(store: BaseStore, metadata_key='"zmetadata', *, path="")

Consolidate all metadata for groups and arrays within the given store into a single resource and put it under the
given key.

This produces a single object in the backend store, containing all the metadata read from all the zarr-related keys
that can be found. After metadata have been consolidated, use open_consolidated() to open the root group
in optimised, read-only mode, using the consolidated metadata to reduce the number of read operations on the
backend store.

Note, that if the metadata in the store is changed after this consolidation, then the metadata read by
open_consolidated() would be incorrect unless this function is called again.

Note: This is an experimental feature.

Parameters

store
[MutableMapping or string] Store or path to directory in file system or name of zip file.

3.6. Convenience functions (zarr.convenience) 105

Zarr-Python, Release 2.17.1

zarr.

metadata_key
[str] Key to put the consolidated metadata under.

path
[str or None] Path corresponding to the group that is being consolidated. Not required for
zarr V2 stores.

Returns

g
[zarr.hierarchy.Group] Group instance, opened with the new consolidated metadata.

See also:
open_consolidated

convenience.open_consolidated(store: BaseStore | MutableMapping | str | None,
metadata_key='".zmetadata', mode="r+', **kwargs)

Open group using metadata previously consolidated into a single key.
This is an optimised method for opening a Zarr group, where instead of traversing the group/array hierarchy by

accessing the metadata keys at each level, a single key contains all of the metadata for everything. For remote
data sources where the overhead of accessing a key is large compared to the time to read data.

The group accessed must have already had its metadata consolidated into a single key using the function
consolidate_metadata().

This optimised method only works in modes which do not change the metadata, although the data may still be
written/updated.

Parameters

store
[MutableMapping or string] Store or path to directory in file system or name of zip file.

metadata_key
[str] Key to read the consolidated metadata from. The default (.zmetadata) corresponds to
the default used by consolidate_metadata().

mode
[{‘r, ‘r+’}, optional] Persistence mode: ‘r’ means read only (must exist); ‘r+ means
read/write (must exist) although only writes to data are allowed, changes to metadata in-
cluding creation of new arrays or group are not allowed.

**kwargs
Additional parameters are passed through to zarr.creation.open_array() or zarr.
hierarchy.open_group().

Returns

g
[zarr.hierarchy.Group] Group instance, opened with the consolidated metadata.

See also:

consolidate_metadata

106

Chapter 3. API reference

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

3.7 Compressors and filters (zarr.codecs)

This module contains compressor and filter classes for use with Zarr. Please note that this module is provided for
backwards compatibility with previous versions of Zarr. From Zarr version 2.2 onwards, all codec classes have been
moved to a separate package called Numcodecs. The two packages (Zarr and Numcodecs) are designed to be used
together. For example, a Numcodecs codec class can be used as a compressor for a Zarr array:

>>> import zarr

>>> from numcodecs import Blosc

>>> z = zarr.zeros(1000000, compressor=Blosc(cname='zstd', clevel=1, shuffle=Blosc.
—SHUFFLE))

Codec classes can also be used as filters. See the tutorial section on Filters for more information.

Please note that it is also relatively straightforward to define and register custom codec classes. See the Numcodecs
codec API and codec registry documentation for more information.

3.8 The Attributes class (zarr.attrs)

class zarr.attrs.Attributes(store, key="zattrs', read_only=False, cache=True, synchronizer=None)

Class providing access to user attributes on an array or group. Should not be instantiated directly, will be available
via the .attrs property of an array or group.

Parameters

store
[MutableMapping] The store in which to store the attributes.

key
[str, optional] The key under which the attributes will be stored.

read_only
[bool, optional] If True, attributes cannot be modified.

cache
[bool, optional] If True (default), attributes will be cached locally.

synchronizer
[Synchronizer] Only necessary if attributes may be modified from multiple threads or pro-
cesses.

__getitem__(item)

__setitem__(item, value)

__delitem__(item)

__iter__QO

_len__O

keys() — a set-like object providing a view on D's keys

asdict()
Retrieve all attributes as a dictionary.

3.7. Compressors and filters (zarr.codecs) 107

https://numcodecs.readthedocs.io/
https://numcodecs.readthedocs.io/
https://numcodecs.readthedocs.io/
https://numcodecs.readthedocs.io/en/latest/abc.html
https://numcodecs.readthedocs.io/en/latest/registry.html

Zarr-Python, Release 2.17.1

put(d)
Overwrite all attributes with the key/value pairs in the provided dictionary d in a single operation.

update(*args, **kwargs)
Update the values of several attributes in a single operation.

refresh()
Refresh cached attributes from the store.

3.9 Synchronization (zarr.sync)

class zarr.sync.ThreadSynchronizer

Provides synchronization using thread locks.

class zarr.sync.ProcessSynchronizer (path)
Provides synchronization using file locks via the fasteners package.

Parameters

path
[string] Path to a directory on a file system that is shared by all processes. N.B., this should
be a different path to where you store the array.

3.10 V3 Specification Implementation(zarr._storage.v3)

This module contains the implementation of the Zarr V3 Specification.

Warning: Since Zarr Python 2.12 release, this module provides experimental infrastructure for reading and writing
the upcoming V3 spec of the Zarr format. Users wishing to prepare for the migration can set the environment
variable ZARR_V3_EXPERIMENTAL_API=1 to begin experimenting, however data written with this API should be
expected to become stale, as the implementation will still change.

The new zarr._store.v3 package has the necessary classes and functions for evaluating Zarr V3. Since the design
is not finalised, the classes and functions are not automatically imported into the regular Zarr namespace.

Code snippet for creating Zarr V3 arrays:

>>> import zarr
>>> z = zarr.create((10000, 10000),

>>> chunks=(100, 100),

>>> dtype="£8",

>>> compressor="default',

>>> path="path-where-you-want-zarr-v3-array',
>>> zarr_version=3)

Further, you can use z.info to see details about the array you just created:

>>> z.info

Name : path-where-you-want-zarr-v3-array
Type : zarr.core.Array

Data type : floatb64

(continues on next page)

108 Chapter 3. API reference

https://fasteners.readthedocs.io/en/latest/api/inter_process/
https://zarr-specs.readthedocs.io/en/latest/v3/core/v3.0.html

Zarr-Python, Release 2.17.1

(continued from previous page)

Shape : (10000, 10000)

Chunk shape : (100, 100)

Order : C

Read-only : False

Compressor : Blosc(cname="'1z4"', clevel=5, shuffle=SHUFFLE, blocksize=0)
Store type : zarr._storage.v3.KVStoreV3

No. bytes : 800000000 (762.9M)

No. bytes stored : 557

Storage ratio 1 1436265.7

Chunks initialized : 0/10000

You can also check Store type here (which indicates Zarr V3).
class zarr._storage.v3.RmdirV3

Mixin class that can be used to ensure override of any existing v2 rmdir class.

class zarr._storage.v3.KVStoreV3 (mutablemapping)

This provides a default implementation of a store interface around a mutable mapping, to avoid having to test
stores for presence of methods.

This, for most methods should just be a pass-through to the underlying KV store which is likely to expose a
MuttableMapping interface,

class zarr._storage.v3.FSStoreV3(url, normalize_keys=False, key_separator=None, mode='w',
exceptions=(<class 'KeyError'>, <class 'PermissionError'>, <class
'OSError'>), dimension_separator: ~typing.Literal['.', /'] | None = None,
fs=None, check=False, create=False, missing_exceptions=None,
**storage_options)

class zarr._storage.v3.MemoryStoreV3 (root=None, cls=<class 'dict’>, dimension_separator:
~typing.Literal[".", /'] | None = None)

Store class that uses a hierarchy of KVStore objects, thus all data will be held in main memory.

Notes

Safe to write in multiple threads.

Examples

This is the default class used when creating a group. E.g.:

r

>>> import zarr

>>> g = zarr.group()

>>> type(g.store)

<class 'zarr.storage.MemoryStore'>

Note that the default class when creating an array is the built-in KVStore class, i.e.:

>>> z = zarr.zeros(100)
>>> type(z.store)
<class 'zarr.storage.KVStore'>

3.10. V3 Specification Implementation(zarr._storage.v3) 109

Zarr-Python, Release 2.17.1

e
L]

class zarr._storage.v3.DirectoryStoreV3 (path, normalize_keys=False, dimension_separator: Literal|
7'] | None = None)

Storage class using directories and files on a standard file system.
Parameters

path
[string] Location of directory to use as the root of the storage hierarchy.

normalize_keys
[bool, optional] If True, all store keys will be normalized to use lower case characters (e.g.
‘foo’ and ‘FOQO’ will be treated as equivalent). This can be useful to avoid potential discrep-
ancies between case-sensitive and case-insensitive file system. Default value is False.

dimension_separator
[{’, "}, optional] Separator placed between the dimensions of a chunk.

Notes
Atomic writes are used, which means that data are first written to a temporary file, then moved into place when

the write is successfully completed. Files are only held open while they are being read or written and are closed
immediately afterwards, so there is no need to manually close any files.

Safe to write in multiple threads or processes.

Examples

Store a single array:

>>> import zarr

>>> store = zarr.DirectoryStore('data/array.zarr')

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
>>> z[...] = 42

A

Each chunk of the array is stored as a separate file on the file system, i.e.:

-

>>> import os
>>> sorted(os.listdir('data/array.zarr'))
['.zarray', '0.0', '0.1', '1.0', '1.1']

Store a group:

>>> store = zarr.DirectoryStore('data/group.zarr')

>>> root = zarr.group(store=store, overwrite=True)

>>> foo = root.create_group('foo')

>>> bar = foo.zeros('bar', shape=(10, 10), chunks=(5, 5))
>>> bar[...] = 42

When storing a group, levels in the group hierarchy will correspond to directories on the file system, i.e.:

>>> sorted(os.listdir('data/group.zarr'))
['.zgroup', 'foo']
>>> sorted(os.listdir('data/group.zarr/foo'))
['.zgroup', 'bar']
(continues on next page)

110 Chapter 3. API reference

https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

(continued from previous page)

>>> sorted(os.listdir('data/group.zarr/foo/bar'))
['.zarray', '0.0', '0.1', '1.0"', '1.1']

class zarr._storage.v3.ZipStoreV3 (path, compression=0, allowZip64=True, mode='a’,
dimension_separator: Literal['", /'] | None = None)

Storage class using a Zip file.
Parameters

path
[string] Location of file.

compression
[integer, optional] Compression method to use when writing to the archive.

allowZip64
[bool, optional] If True (the default) will create ZIP files that use the ZIP64 extensions when
the zipfile is larger than 2 GiB. If False will raise an exception when the ZIP file would require
Z1P64 extensions.

mode
[string, optional] One of ‘r’ to read an existing file, ‘w’ to truncate and write a new file, ‘a’
to append to an existing file, or ‘x’ to exclusively create and write a new file.

dimension_separator
[{*’, */’}, optional] Separator placed between the dimensions of a chunk.

Notes

Each chunk of an array is stored as a separate entry in the Zip file. Note that Zip files do not provide any way to
remove or replace existing entries. If an attempt is made to replace an entry, then a warning is generated by the
Python standard library about a duplicate Zip file entry. This can be triggered if you attempt to write data to a
Zarr array more than once, e.g.:

-

>>> store = zarr.ZipStore('data/example.zip', mode="w")
>>> z = zarr.zeros(100, chunks=10, store=store)
>>> # first write OK

cee z[o00] = 42
>>> # second write generates warnings
z[...] = 42

>>> store.close()

L

This can also happen in a more subtle situation, where data are written only once to a Zarr array, but the write
operations are not aligned with chunk boundaries, e.g.:

>>> store = zarr.ZipStore('data/example.zip', mode='w")

>>> z = zarr.zeros(100, chunks=10, store=store)

>>> z[5:15] = 42

>>> # write overlaps chunk previously written, generates warnings
. z[15:25] = 42

To avoid creating duplicate entries, only write data once, and align writes with chunk boundaries. This alignment
is done automatically if you call z[...] = ... orcreate an array from existing data via zarr.arrayQ).

3.10. V3 Specification Implementation(zarr._storage.v3) 111

https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

Alternatively, use a DirectoryStore when writing the data, then manually Zip the directory and use the Zip
file for subsequent reads. Take note that the files in the Zip file must be relative to the root of the Zarr archive.
You may find it easier to create such a Zip file with 7z, e.g.:

[72 a -tzip archive.zarr.zip archive.zarr/.]

Safe to write in multiple threads but not in multiple processes.

Examples

Store a single array:

>>> import zarr

>>> store = zarr.ZipStore('data/array.zip', mode='w')

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store)

>>> z[...] = 42

>>> store.close() # don't forget to call this when you're done

Store a group:

>>> store = zarr.ZipStore('data/group.zip', mode='w')

>>> root = zarr.group(store=store)

>>> foo = root.create_group('foo')

>>> bar = foo.zeros('bar', shape=(10, 10), chunks=(5, 5))

>>> bar[...] = 42

>>> store.close() # don't forget to call this when you're done

After modifying a ZipStore, the close() method must be called, otherwise essential data will not be written
to the underlying Zip file. The ZipStore class also supports the context manager protocol, which ensures the
close() method is called on leaving the context, e.g.:

>>> with zarr.ZipStore('data/array.zip', mode='w') as store:
z = zarr.zeros((10, 10), chunks=(5, 5), store=store)
z[...] = 42
no need to call store.close()

class zarr._storage.v3.RedisStoreV3 (prefix="zarr', dimension_separator: Literal[".', /'] | None = None,
**kwargs)

Storage class using Redis.

Note: This is an experimental feature.

Requires the redis package to be installed.
Parameters

prefix
[string] Name of prefix for Redis keys

dimension_separator
[{*’, */’}, optional] Separator placed between the dimensions of a chunk.

**kwargs
Keyword arguments passed through to the redis.Redis function.

112 Chapter 3. API reference

https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://redis-py.readthedocs.io/

Zarr-Python, Release 2.17.1

class zarr._storage.v3.MongoDBStoreV3 (database="mongodb_zarr', collection="zarr_collection’,
dimension_separator: Literal['", /'] | None = None, **kwargs)

Storage class using MongoDB.

Note: This is an experimental feature.

Requires the pymongo package to be installed.
Parameters

database
[string] Name of database

collection
[string] Name of collection

dimension_separator
[{*’, °/’}, optional] Separator placed between the dimensions of a chunk.

**Kkwargs
Keyword arguments passed through to the pymongo.MongoClient function.

Notes

The maximum chunksize in MongoDB documents is 16 MB.

class zarr._storage.v3.DBMStoreV3(path, flag="c', mode=438, open=None, write_lock=True,
dimension_separator: Literal['', /'] | None = None, **open_kwargs)
Storage class using a DBM-style database.

Parameters

path
[string] Location of database file.

flag
[string, optional] Flags for opening the database file.

mode
[int] File mode used if a new file is created.

open
[function, optional] Function to open the database file. If not provided, dbm.open() will be
used on Python 3, and anydbm.open() will be used on Python 2.

write_lock: bool, optional
Use a lock to prevent concurrent writes from multiple threads (True by default).

dimension_separator

[{°’, ¢/}, optional] Separator placed between the dimensions of a chunk.e
**open_kwargs

Keyword arguments to pass the open function.

3.10. V3 Specification Implementation(zarr._storage.v3) 113

https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://pymongo.readthedocs.io/en/stable/
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/dbm.html#dbm.open

Zarr-Python, Release 2.17.1

Notes

Please note that, by default, this class will use the Python standard library dbm.open function to open the database
file (or anydbm.open on Python 2). There are up to three different implementations of DBM-style databases
available in any Python installation, and which one is used may vary from one system to another. Database
file formats are not compatible between these different implementations. Also, some implementations are more
efficient than others. In particular, the “dumb” implementation will be the fall-back on many systems, and has
very poor performance for some usage scenarios. If you want to ensure a specific implementation is used, pass
the corresponding open function, e.g., dbm.gnu.open to use the GNU DBM library.

Safe to write in multiple threads. May be safe to write in multiple processes, depending on which DBM imple-
mentation is being used, although this has not been tested.

Examples

Store a single array:

L

>>> import zarr

>>> store = zarr.DBMStore('data/array.db')

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
>>> z[...] = 42

>>> store.close() # don't forget to call this when you're done

Store a group:

-

>>> store = zarr.DBMStore('data/group.db")

>>> root = zarr.group(store=store, overwrite=True)

>>> foo = root.create_group('foo')

>>> bar = foo.zeros('bar', shape=(10, 10), chunks=(5, 5))

>>> bar[...] = 42

>>> store.close() # don't forget to call this when you're done

After modifying a DBMStore, the close () method must be called, otherwise essential data may not be written
to the underlying database file. The DBMStore class also supports the context manager protocol, which ensures
the close () method is called on leaving the context, e.g.:

>>> with zarr.DBMStore('data/array.db') as store:
z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
z[...] = 42
no need to call store.close()

A different database library can be used by passing a different function to the open parameter. For example, if
the bsddb3 package is installed, a Berkeley DB database can be used:

>>> import bsddb3

>>> store = zarr.DBMStore('data/array.bdb', open=bsddb3.btopen)

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
>>> z[...] = 42

>>> store.close()

class zarr._storage.v3.LMDBStoreV3 (path, buffers=True, dimension_separator: Literal[".', /'] | None =

None, **kwargs)
Storage class using LMDB. Requires the Imdb package to be installed.

Parameters

114

Chapter 3. API reference

https://www.jcea.es/programacion/pybsddb.htm
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://lmdb.readthedocs.io/

Zarr-Python, Release 2.17.1

path
[string] Location of database file.

buffers
[bool, optional] If True (default) use support for buffers, which should increase performance
by reducing memory copies.

dimension_separator
[{‘’, °/’}, optional] Separator placed between the dimensions of a chunk.

**kwargs
Keyword arguments passed through to the Imdb.open function.

Notes

By default writes are not immediately flushed to disk to increase performance. You can ensure data are flushed
to disk by calling the £lush() or close () methods.

Should be safe to write in multiple threads or processes due to the synchronization support within LMDB, al-
though writing from multiple processes has not been tested.

Examples

Store a single array:

.

>>> import zarr

>>> store = zarr.LMDBStore('data/array.mdb')

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
>>> z[...] = 42

>>> store.close() # don't forget to call this when you're done

Store a group:

-

>>> store = zarr.LMDBStore('data/group.mdb"')

>>> root = zarr.group(store=store, overwrite=True)

>>> foo = root.create_group('foo')

>>> bar foo.zeros('bar', shape=(10, 10), chunks=(5, 5))

>>> bar[...] = 42

>>> store.close() # don't forget to call this when you're done

After modifying a DBMStore, the close () method must be called, otherwise essential data may not be written
to the underlying database file. The DBMStore class also supports the context manager protocol, which ensures
the close () method is called on leaving the context, e.g.:

>>> with zarr.LMDBStore('data/array.mdb') as store:
z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
z[...] = 42
no need to call store.close()

class zarr._storage.v3.SQLiteStoreV3 (path, dimension_separator: Literal[".", /'] | None = None, **kwargs)

Storage class using SQLite.
Parameters

path
[string] Location of database file.

3.10.

V3 Specification Implementation(zarr._storage.v3) 115

https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None

Zarr-Python, Release 2.17.1

dimension_separator
[{*’, °/’}, optional] Separator placed between the dimensions of a chunk.

**kwargs
Keyword arguments passed through to the sqlite3.connect function.

Examples

Store a single array:

-

>>> import zarr

>>> store = zarr.SQLiteStore('data/array.sqldb')

>>> z = zarr.zeros((10, 10), chunks=(5, 5), store=store, overwrite=True)
>>> z[...] = 42

>>> store.close() # don't forget to call this when you're done

Store a group:

>>> store = zarr.SQLiteStore('data/group.sqgldb')

>>> root = zarr.group(store=store, overwrite=True)

>>> foo = root.create_group('foo')

>>> bar = foo.zeros('bar', shape=(10, 10), chunks=(5, 5))

>>> bar[...] = 42

>>> store.close() # don't forget to call this when you're done

class zarr._storage.v3.LRUStoreCacheV3 (store, max_size: int)

Storage class that implements a least-recently-used (LRU) cache layer over some other store. Intended primarily
for use with stores that can be slow to access, €. g., remote stores that require network communication to store
and retrieve data.

Parameters

store
[Store] The store containing the actual data to be cached.

max_size
[int] The maximum size that the cache may grow to, in number of bytes. Provide None if
you would like the cache to have unlimited size.

Examples

The example below wraps an S3 store with an LRU cache:

>>> import s3fs

>>> import zarr

>>> s3 = s3fs.S3FileSystem(anon=True, client_kwargs=dict(region_name='eu-west-2"))
>>> store = s3fs.S3Map(root='zarr-demo/store', s3=s3, check=False)
>>> cache = zarr.LRUStoreCache(store, max_size=2%%28)

>>> root = zarr.group(store=cache)

>>> z = root['foo/bar/baz']

>>> from timeit import timeit

>>> # first data access is relatively slow, retrieved from store
... timeit('print(z[:].tobytes())', number=1, globals=globals())
b'Hello from the cloud!'

(continues on next page)

116 Chapter 3. API reference

https://docs.python.org/3/library/functions.html#int

Zarr-Python, Release 2.17.1

(continued from previous page)
0.1081731989979744
>>> # second data access is faster, uses cache
. timeit('print(z[:].tobytes())"', number=1, globals=globals())
b'Hello from the cloud!'
0.0009490990014455747

class zarr._storage.v3.ConsolidatedMetadataStoreV3 (store: BaseStore | MutableMapping, meta-
data_key="meta/root/consolidated/.zmetadata")

A layer over other storage, where the metadata has been consolidated into a single key.

The purpose of this class, is to be able to get all of the metadata for a given array in a single read operation
from the underlying storage. See zarr. convenience.consolidate_metadata () for how to create this single
metadata key.

This class loads from the one key, and stores the data in a dict, so that accessing the keys no longer requires
operations on the backend store.

This class is read-only, and attempts to change the array metadata will fail, but changing the data is possible.
If the backend storage is changed directly, then the metadata stored here could become obsolete, and zarr.
convenience.consolidate_metadata() should be called again and the class re-invoked. The use case is for
write once, read many times.

Note: This is an experimental feature.

Parameters

store: Store
Containing the zarr array.

metadata_key: str
The target in the store where all of the metadata are stored. We assume JSON encoding.

See also:
zarr.convenience.consolidate_metadata, zarr.convenience.open_consolidated

In v3 storage transformers can be set via zarr.create(..., storage_transformers=[...]). Theexperimental
sharding storage transformer can be tested by setting the environment variable ZARR_V3_SHARDING=1. Data written
with this flag enabled should be expected to become stale until ZEP 2 is approved and fully implemented.

class zarr._storage.v3_storage_transformers.ShardingStorageTransformer (_type,
chunks_per_shard)

Implements sharding as a storage transformer, as described in the spec: https://zarr-specs.readthedocs.io/
en/latest/extensions/storage-transformers/sharding/v1.0.html https://purl.org/zarr/spec/storage_transformers/
sharding/1.0

The abstract base class for storage transformers is

class zarr._storage.store.StorageTransformer (_type)

Base class for storage transformers. The methods simply pass on the data as-is and should be overwritten by
sub-classes.

3.10. V3 Specification Implementation(zarr._storage.v3) 117

https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://zarr-specs.readthedocs.io/en/latest/v3/array-storage-transformers/sharding/v1.0.html
https://zarr.dev/zeps/draft/ZEP0002.html
https://zarr-specs.readthedocs.io/en/latest/extensions/storage-transformers/sharding/v1.0.html
https://zarr-specs.readthedocs.io/en/latest/extensions/storage-transformers/sharding/v1.0.html
https://purl.org/zarr/spec/storage_transformers/sharding/1.0
https://purl.org/zarr/spec/storage_transformers/sharding/1.0

Zarr-Python, Release 2.17.1

3.11 Indices and tables

* genindex
¢ modindex

¢ search

118 Chapter 3. API reference

CHAPTER
FOUR

SPECIFICATIONS

4.1 Zarr Storage Specification Version 3

The V3 Specification has been migrated to its website — https://zarr-specs.readthedocs.io/.

4.2 Zarr Storage Specification Version 2

This document provides a technical specification of the protocol and format used for storing Zarr arrays. The key
words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “REC-
OMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

4.2.1 Status

This specification is the latest version. See Specifications for previous versions.

4.2.2 Storage

A Zarr array can be stored in any storage system that provides a key/value interface, where a key is an ASCII string and
a value is an arbitrary sequence of bytes, and the supported operations are read (get the sequence of bytes associated
with a given key), write (set the sequence of bytes associated with a given key) and delete (remove a key/value pair).

For example, a directory in a file system can provide this interface, where keys are file names, values are file contents,
and files can be read, written or deleted via the operating system. Equally, an S3 bucket can provide this interface,
where keys are resource names, values are resource contents, and resources can be read, written or deleted via HTTP.

Below an “array store” refers to any system implementing this interface.

4.2.3 Arrays

Metadata

Each array requires essential configuration metadata to be stored, enabling correct interpretation of the stored data.
This metadata is encoded using JSON and stored as the value of the “.zarray” key within an array store.

The metadata resource is a JSON object. The following keys MUST be present within the object:

zarr_format
An integer defining the version of the storage specification to which the array store adheres.

119

https://zarr-specs.readthedocs.io/
https://www.ietf.org/rfc/rfc2119.txt

Zarr-Python, Release 2.17.1

shape
A list of integers defining the length of each dimension of the array.

chunks
A list of integers defining the length of each dimension of a chunk of the array. Note that all chunks within a
Zarr array have the same shape.

dtype
A string or list defining a valid data type for the array. See also the subsection below on data type encoding.

compressor
A JSON object identifying the primary compression codec and providing configuration parameters, or null if
no compressor is to be used. The object MUST contain an "id" key identifying the codec to be used.

fill_value
A scalar value providing the default value to use for uninitialized portions of the array, or null if no fill_value
is to be used.

order
Either “C” or “F”, defining the layout of bytes within each chunk of the array. “C” means row-major order, i.e.,
the last dimension varies fastest; “F” means column-major order, i.e., the first dimension varies fastest.

filters
A list of JSON objects providing codec configurations, or null if no filters are to be applied. Each codec
configuration object MUST contain a "id" key identifying the codec to be used.

The following keys MAY be present within the object:

dimension_separator
If present, either the string "." or " /" defining the separator placed between the dimensions of a chunk. If the
value is not set, then the default MUST be assumed to be ".", leading to chunk keys of the form “0.0”. Arrays
defined with "/" as the dimension separator can be considered to have nested, or hierarchical, keys of the form
“0/0” that SHOULD where possible produce a directory-like structure.

Other keys SHOULD NOT be present within the metadata object and SHOULD be ignored by implementations.

For example, the JSON object below defines a 2-dimensional array of 64-bit little-endian floating point numbers with
10000 rows and 10000 columns, divided into chunks of 1000 rows and 1000 columns (so there will be 100 chunks
in total arranged in a 10 by 10 grid). Within each chunk the data are laid out in C contiguous order. Each chunk is
encoded using a delta filter and compressed using the Blosc compression library prior to storage:

{

"chunks": [
1000,
1000

1,

"compressor": {
"id": "blosc",
"cname": "1z4",
"clevel": 5,
"shuffle": 1

I

"dtype": "<£8",

"fill_value": "NaN",

"filters": [

{"id": "delta", "dtype": "<f8", "astype": "<f4"}

1,

"order": "C",

(continues on next page)

120 Chapter 4. Specifications

Zarr-Python, Release 2.17.1

(continued from previous page)
"shape": [
10000,
10000
1,

"zarr_format": 2

Data type encoding

Simple data types are encoded within the array metadata as a string, following the NumPy array protocol type string
(typestr) format. The format consists of 3 parts:

* One character describing the byteorder of the data ("<": little-endian; ">": big-endian; " | ": not-relevant)

* One character code giving the basic type of the array ("b": Boolean (integer type where all values are only
True or False); "i": integer; "u": unsigned integer; "£": floating point; "c": complex floating point; "m":
timedelta; "M": datetime; "S": string (fixed-length sequence of char); "U": unicode (fixed-length sequence of

Py_UNICODE); "V": other (void * — each item is a fixed-size chunk of memory))
* An integer specifying the number of bytes the type uses.
The byte order MUST be specified. E.g., "<£8", ">i4", " |b1" and " |S12" are valid data type encodings.

For datetime64 (“M”) and timedelta64 (“m”) data types, these MUST also include the units within square brackets.
A list of valid units and their definitions are given in the NumPy documentation on Datetimes and Timedeltas. For
example, "<M8[ns]" specifies a datetime64 data type with nanosecond time units.

Structured data types (i.e., with multiple named fields) are encoded as a list of lists, following NumPy array protocol
type descriptions (descr). Each sub-list has the form [fieldname, datatype, shape] where shape is optional.
fieldname is a string, datatype is a string specifying a simple data type (see above), and shape is a list of integers
specifying subarray shape. For example, the JSON list below defines a data type composed of three single-byte unsigned
integer fields named “r”, “g” and “b™:

(0=, "1u1'1, g7, "lutl, b7, el]

For example, the JSON list below defines a data type composed of three fields named “x”, “y” and “z”, where “x” and

[T

y”> each contain 32-bit floats, and each item in “z” is a 2 by 2 array of floats:

[[["x", "ef4"], [My", "<fa"1, ["z", "<f4", [2, 2111]

Structured data types may also be nested, e.g., the following JSON list defines a data type with two fields “foo” and
“bar”, where “bar” has two sub-fields “baz” and “qux”":

[[["foo", "<f4"], ["bar", [["baz", "<£f4"], ["qux", "<i4"]]11] J

4.2. Zarr Storage Specification Version 2 121

https://numpy.org/doc/stable/reference/arrays.interface.html#arrays-interface
https://numpy.org/doc/stable/reference/arrays.interface.html#arrays-interface
https://numpy.org/doc/stable/reference/arrays.datetime.html#arrays-dtypes-dateunits
https://numpy.org/doc/stable/reference/arrays.interface.html#arrays-interface
https://numpy.org/doc/stable/reference/arrays.interface.html#arrays-interface

Zarr-Python, Release 2.17.1

Fill value encoding

For simple floating point data types, the following table MUST be used to encode values of the “fill_value” field:

Value JSON encoding
Not a Number "NaN"

Positive Infinity "Infinity"
Negative Infinity "-Infinity"

If an array has a fixed length byte string data type (e.g., " |S12"), or a structured data type, and if the fill value is not
null, then the fill value MUST be encoded as an ASCII string using the standard Base64 alphabet.

Chunks

Each chunk of the array is compressed by passing the raw bytes for the chunk through the primary compression library
to obtain a new sequence of bytes comprising the compressed chunk data. No header is added to the compressed
bytes or any other modification made. The internal structure of the compressed bytes will depend on which primary
compressor was used. For example, the Blosc compressor produces a sequence of bytes that begins with a 16-byte
header followed by compressed data.

The compressed sequence of bytes for each chunk is stored under a key formed from the index of the chunk within
the grid of chunks representing the array. To form a string key for a chunk, the indices are converted to strings and
concatenated with the period character (*.”) separating each index. For example, given an array with shape (10000,
10000) and chunk shape (1000, 1000) there will be 100 chunks laid out in a 10 by 10 grid. The chunk with indices
(0, 0) provides data for rows 0-999 and columns 0-999 and is stored under the key “0.0”; the chunk with indices (2, 4)

provides data for rows 2000-2999 and columns 4000-4999 and is stored under the key “2.4”; etc.

There is no need for all chunks to be present within an array store. If a chunk is not present then it is considered to
be in an uninitialized state. An uninitialized chunk MUST be treated as if it was uniformly filled with the value of the
“fill_value” field in the array metadata. If the “fill_value” field is null then the contents of the chunk are undefined.

Note that all chunks in an array have the same shape. If the length of any array dimension is not exactly divisible by
the length of the corresponding chunk dimension then some chunks will overhang the edge of the array. The contents
of any chunk region falling outside the array are undefined.

Filters

Optionally a sequence of one or more filters can be used to transform chunk data prior to compression. When storing
data, filters are applied in the order specified in array metadata to encode data, then the encoded data are passed to
the primary compressor. When retrieving data, stored chunk data are decompressed by the primary compressor then
decoded using filters in the reverse order.

4.2.4 Hierarchies

Logical storage paths

Multiple arrays can be stored in the same array store by associating each array with a different logical path. A logical
path is simply an ASCII string. The logical path is used to form a prefix for keys used by the array. For example,
if an array is stored at logical path “foo/bar” then the array metadata will be stored under the key “foo/bar/.zarray”,
the user-defined attributes will be stored under the key “foo/bar/.zattrs”, and the chunks will be stored under keys like
“foo/bar/0.0”, “foo/bar/0.1”, etc.

122 Chapter 4. Specifications

https://github.com/Blosc/c-blosc/blob/main/README_CHUNK_FORMAT.rst

Zarr-Python, Release 2.17.1

To ensure consistent behaviour across different storage systems, logical paths MUST be normalized as follows:
* Replace all backward slash characters ("\\”) with forward slash characters (“/”")
* Strip any leading ““/” characters
e Strip any trailing “/”” characters
 Collapse any sequence of more than one “/”” character into a single “/”” character
The key prefix is then obtained by appending a single *“/” character to the normalized logical path.

@

After normalization, if splitting a logical path by the “/” character results in any path segment equal to the string “.” or
the string “..” then an error MUST be raised.

N.B., how the underlying array store processes requests to store values under keys containing the *“/”” character is entirely
up to the store implementation and is not constrained by this specification. E.g., an array store could simply treat all
keys as opaque ASCII strings; equally, an array store could map logical paths onto some kind of hierarchical storage
(e.g., directories on a file system).

Groups

Arrays can be organized into groups which can also contain other groups. A group is created by storing group metadata
under the “.zgroup” key under some logical path. E.g., a group exists at the root of an array store if the “.zgroup” key
exists in the store, and a group exists at logical path “foo/bar” if the “foo/bar/.zgroup” key exists in the store.

If the user requests a group to be created under some logical path, then groups MUST also be created at all ancestor
paths. E.g., if the user requests group creation at path “foo/bar” then groups MUST be created at path “foo” and the
root of the store, if they don’t already exist.

If the user requests an array to be created under some logical path, then groups MUST also be created at all ancestor
paths. E.g., if the user requests array creation at path “foo/bar/baz” then groups must be created at path “foo/bar”, path
“f00”, and the root of the store, if they don’t already exist.

The group metadata resource is a JSON object. The following keys MUST be present within the object:

zarr_format
An integer defining the version of the storage specification to which the array store adheres.

Other keys MUST NOT be present within the metadata object.

The members of a group are arrays and groups stored under logical paths that are direct children of the parent group’s
logical path. E.g., if groups exist under the logical paths “foo” and “foo/bar” and an array exists at logical path “foo/baz”
then the members of the group at path “foo” are the group at path “foo/bar” and the array at path “foo/baz”.

4.2.5 Attributes

An array or group can be associated with custom attributes, which are arbitrary key/value pairs with application-specific
meaning. Custom attributes are encoded as a JSON object and stored under the “.zattrs” key within an array store. The
“.zattrs” key does not have to be present, and if it is absent the attributes should be treated as empty.

For example, the JSON object below encodes three attributes named “foo”, “bar” and “baz’:

{
"foo": 42,
"bar": "apples",
"baz": [1, 2, 3, 4]

4.2. Zarr Storage Specification Version 2 123

Zarr-Python, Release 2.17.1

4.2.6 Examples

Storing a single array

Below is an example of storing a Zarr array, using a directory on the local file system as storage.

Create an array:

>>> import zarr

>>> store = zarr.DirectoryStore('data/example.zarr')

>>> a = zarr.create(shape=(20, 20), chunks=(10, 10), dtype='i4',
fill_value=42, compressor=zarr.Zlib(level=1),
store=store, overwrite=True)

No chunks are initialized yet, so only the “.zarray” and “.zattrs” keys have been set in the store:

>>> import os
>>> sorted(os.listdir('data/example.zarr'))
['.zarray']

Inspect the array metadata:

>>> print(open('data/example.zarr/.zarray').read())

{
"chunks": [
10,
10
[P
"compressor": {
"id": "zlib",
"level": 1
I
"dtype": "<i4d",
"fill _value": 42,
"filters": null,
"order": "C",
"shape": [
20,
20
i
"zarr_format": 2
}

Chunks are initialized on demand. E.g., set some data:

>>> a[0:10, 0:10] =1
>>> sorted(os.listdir('data/example.zarr'))
['.zarray', '0.0']

Set some more data:

>>> a[0:10, 10:20] = 2

>>> a[10:20, :] = 3

>>> sorted(os.listdir('data/example.zarr'))
['.zarray', '0.0', '0.1', '1.0', "1.1']

124 Chapter 4. Specifications

Zarr-Python, Release 2.17.1

Manually decompress a single chunk for illustration:

>>> import zlib

>>> buf = zlib.decompress(open('data/example.zarr/0.0', 'rb').read())
>>> import numpy as np

>>> chunk = np.frombuffer(buf, dtype='<i4d")

>>> chunk
array(ft$, 1, 1, 1,1, 1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 1, 1, 1, 1,
i, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1,1, 1, 1,1, 1,1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
Modify the array attributes:
>>> a.attrs['foo'] = 42
>>> a.attrs['bar'] = 'apples'
>>> a.attrs['baz'] = [1, 2, 3, 4]
>>> sorted(os.listdir('data/example.zarr'))
['.zarray', '.zattrs', '0.0', '0.1', "1.0', '1.1']
>>> print(open('data/example.zarr/.zattrs').read())
{
"bar": "apples",
"baz": [
1,
2,
3;
4
I[P
"foo": 42
b

Storing multiple arrays in a hierarchy

Below is an example of storing multiple Zarr arrays organized into a group hierarchy, using a directory on the local
file system as storage. This storage implementation maps logical paths onto directory paths on the file system, however
this is an implementation choice and is not required.

Setup the store:

>>> import zarr
>>> store = zarr.DirectoryStore('data/group.zarr")

Create the root group:

[>>> root_grp = zarr.group(store, overwrite=True)

The metadata resource for the root group has been created:

>>> import os
>>> sorted(os.listdir('data/group.zarr'))
['.zgroup']

Inspect the group metadata:

4.2. Zarr Storage Specification Version 2 125

Zarr-Python, Release 2.17.1

>>> print(open('data/group.zarr/.zgroup').read())
{

"zarr_format": 2

}

Create a sub-group:

[>>> sub_grp = root_grp.create_group('foo")

‘What has been stored:

>>> sorted(os.listdir('data/group.zarr'))
['.zgroup', 'foo']

>>> sorted(os.listdir('data/group.zarr/foo'))
['.zgroup']

Create an array within the sub-group:

>>> a = sub_grp.create_dataset('bar', shape=(20, 20), chunks=(10, 10))
>>> al[:] = 42

Set a custom attributes:

[>>> a.attrs['comment'] = 'answer to life, the universe and everything'

‘What has been stored:

>>> sorted(os.listdir('data/group.zarr'))
['.zgroup', 'foo']

>>> sorted(os.listdir('data/group.zarr/foo'))
['.zgroup', 'bar']

>>> sorted(os.listdir('data/group.zarr/foo/bar'))
['.zarray', '.zattrs', '0.0', '0.1', '1.0', '1.1']

Here is the same example using a Zip file as storage:

>>> store = zarr.ZipStore('data/group.zip', mode='w')

>>> root_grp = zarr.group(store)

>>> sub_grp = root_grp.create_group('foo")

>>> a = sub_grp.create_dataset('bar', shape=(20, 20), chunks=(10, 10))
>>> al[:] = 42

>>> a.attrs['comment'] = 'answer to life, the universe and everything'
>>> store.close()

‘What has been stored:

>>> import zipfile
>>> zf = zipfile.ZipFile('data/group.zip', mode='r")
>>> for name in sorted(zf.namelist()):
print (name)
. Zgroup
foo/.zgroup
foo/bar/.zarray
foo/bar/.zattrs

(continues on next page)

126 Chapter 4. Specifications

Zarr-Python, Release 2.17.1

(continued from previous page)

foo/bar/0.0
foo/bar/0.1
foo/bar/1.0
foo/bar/1.1

4.2.7 Changes
Version 2 clarifications
The following changes have been made to the version 2 specification since it was initially published to clarify ambigu-

ities and add some missing information.

* The specification now describes how bytes fill values should be encoded and decoded for arrays with a fixed-
length byte string data type (#165, #176).

» The specification now clarifies that units must be specified for datetime64 and timedelta64 data types (#85, #215).

* The specification now clarifies that the ‘.zattrs’ key does not have to be present for either arrays or groups, and if
absent then custom attributes should be treated as empty.

» The specification now describes how structured datatypes with subarray shapes and/or with nested structured
data types are encoded in array metadata (#111, #296).

* Clarified the key/value pairs of custom attributes as “arbitrary” rather than “simple”.

Changes from version 1 to version 2

The following changes were made between version 1 and version 2 of this specification:
* Added support for storing multiple arrays in the same store and organising arrays into hierarchies using groups.
* Array metadata is now stored under the “.zarray” key instead of the “meta” key.
» Custom attributes are now stored under the “.zattrs” key instead of the “attrs” key.
* Added support for filters.
¢ Changed encoding of “fill_value” field within array metadata.

* Changed encoding of compressor information within array metadata to be consistent with representation of filter
information.

4.3 Zarr Storage Specification Version 1

This document provides a technical specification of the protocol and format used for storing a Zarr array. The key
words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “REC-
OMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC 2119.

4.3. Zarr Storage Specification Version 1 127

https://github.com/zarr-developers/zarr-python/issues/165
https://github.com/zarr-developers/zarr-python/issues/176
https://github.com/zarr-developers/zarr-python/issues/85
https://github.com/zarr-developers/zarr-python/issues/215
https://github.com/zarr-developers/zarr-python/issues/111
https://github.com/zarr-developers/zarr-python/issues/296
https://www.ietf.org/rfc/rfc2119.txt

Zarr-Python, Release 2.17.1

4.3.1 Status

This specification is deprecated. See Specifications for the latest version.

4.3.2 Storage

A Zarr array can be stored in any storage system that provides a key/value interface, where a key is an ASCII string and
a value is an arbitrary sequence of bytes, and the supported operations are read (get the sequence of bytes associated
with a given key), write (set the sequence of bytes associated with a given key) and delete (remove a key/value pair).

For example, a directory in a file system can provide this interface, where keys are file names, values are file contents,
and files can be read, written or deleted via the operating system. Equally, an S3 bucket can provide this interface,
where keys are resource names, values are resource contents, and resources can be read, written or deleted via HTTP.

Below an “array store” refers to any system implementing this interface.

4.3.3 Metadata

Each array requires essential configuration metadata to be stored, enabling correct interpretation of the stored data.
This metadata is encoded using JSON and stored as the value of the ‘meta’ key within an array store.

The metadata resource is a JSON object. The following keys MUST be present within the object:

zarr_format
An integer defining the version of the storage specification to which the array store adheres.

shape
A list of integers defining the length of each dimension of the array.

chunks
A list of integers defining the length of each dimension of a chunk of the array. Note that all chunks within a
Zarr array have the same shape.

dtype
A string or list defining a valid data type for the array. See also the subsection below on data type encoding.

compression
A string identifying the primary compression library used to compress each chunk of the array.

compression_opts
An integer, string or dictionary providing options to the primary compression library.

fill_value
A scalar value providing the default value to use for uninitialized portions of the array.

order
Either ‘C’ or ‘F’, defining the layout of bytes within each chunk of the array. ‘C’ means row-major order, i.e.,
the last dimension varies fastest; ‘F’ means column-major order, i.e., the first dimension varies fastest.

Other keys MAY be present within the metadata object however they MUST NOT alter the interpretation of the required
fields defined above.

For example, the JSON object below defines a 2-dimensional array of 64-bit little-endian floating point numbers with
10000 rows and 10000 columns, divided into chunks of 1000 rows and 1000 columns (so there will be 100 chunks in
total arranged in a 10 by 10 grid). Within each chunk the data are laid out in C contiguous order, and each chunk is
compressed using the Blosc compression library:

128 Chapter 4. Specifications

Zarr-Python, Release 2.17.1

"chunks": [
1000,
1000

1,

"compression": "blosc",
"compression_opts": {
"clevel": 5,

"cname": "1z4",
"shuffle": 1

1

"dtype": "<£8",

"fill _value": null,

"order": "C",

"shape": [

10000,
10000
1,

"zarr_format": 1

Data type encoding

Simple data types are encoded within the array metadata resource as a string, following the NumPy array protocol type
string (typestr) format. The format consists of 3 parts: a character describing the byteorder of the data (<: little-endian,
>: big-endian, |: not-relevant), a character code giving the basic type of the array, and an integer providing the number
of bytes the type uses. The byte order MUST be specified. E.g., "<£8", ">i4", "|b1" and "|S12" are valid data

types.

Structure data types (i.e., with multiple named fields) are encoded as a list of two-element lists, following NumPy array
protocol type descriptions (descr). For example, the JSON list [["r", "[ul"], ["g", "[ul™], ["b", "|ul"]1]
defines a data type composed of three single-byte unsigned integers labelled ‘t’, ‘g’ and ‘b’.

4.3.4 Chunks

Each chunk of the array is compressed by passing the raw bytes for the chunk through the primary compression library
to obtain a new sequence of bytes comprising the compressed chunk data. No header is added to the compressed
bytes or any other modification made. The internal structure of the compressed bytes will depend on which primary
compressor was used. For example, the Blosc compressor produces a sequence of bytes that begins with a 16-byte
header followed by compressed data.

The compressed sequence of bytes for each chunk is stored under a key formed from the index of the chunk within
the grid of chunks representing the array. To form a string key for a chunk, the indices are converted to strings and
concatenated with the period character (*.’) separating each index. For example, given an array with shape (10000,
10000) and chunk shape (1000, 1000) there will be 100 chunks laid out in a 10 by 10 grid. The chunk with indices
(0, 0) provides data for rows 0-999 and columns 0-999 and is stored under the key ‘0.0’; the chunk with indices (2, 4)
provides data for rows 2000-2999 and columns 4000-4999 and is stored under the key 2.4’; etc.

There is no need for all chunks to be present within an array store. If a chunk is not present then it is considered to
be in an uninitialized state. An uninitialized chunk MUST be treated as if it was uniformly filled with the value of the
“fill_value’ field in the array metadata. If the ‘fill_value’ field is null then the contents of the chunk are undefined.

4.3. Zarr Storage Specification Version 1 129

numpy:arrays.interface
numpy:arrays.interface
numpy:arrays.interface
numpy:arrays.interface
https://github.com/Blosc/c-blosc/blob/main/README_HEADER.rst

Zarr-Python, Release 2.17.1

Note that all chunks in an array have the same shape. If the length of any array dimension is not exactly divisible by
the length of the corresponding chunk dimension then some chunks will overhang the edge of the array. The contents
of any chunk region falling outside the array are undefined.

4.3.5 Attributes

Each array can also be associated with custom attributes, which are simple key/value items with application-specific
meaning. Custom attributes are encoded as a JSON object and stored under the ‘attrs’ key within an array store. Even
if the attributes are empty, the ‘attrs’ key MUST be present within an array store.

For example, the JSON object below encodes three attributes named ‘foo’, ‘bar’ and ‘baz’:

{
"foo": 42,
"bar": "apples",
"baz": [1, 2, 3, 4]

4.3.6 Example

Below is an example of storing a Zarr array, using a directory on the local file system as storage.

Initialize the store:

>>> import zarr

>>> store = zarr.DirectoryStore('example.zarr')

>>> zarr.init_store(store, shape=(20, 20), chunks=(10, 10),
dtype='i4"', fill_value=42, compression='zlib',
compression_opts=1, overwrite=True)

No chunks are initialized yet, so only the ‘meta’ and ‘attrs’ keys have been set:

>>> import os
>>> sorted(os.listdir('example.zarr'))
["attrs', 'meta']

Inspect the array metadata:

>>> print(open('example.zarr/meta').read())

{

"chunks": [

10,

10
[P
"compression": "zlib",
"compression_opts": 1,
"dtype": "<id",
"fill_value": 42,
"order": "C",
"shape": [

20,

20
I[P

(continues on next page)

130 Chapter 4. Specifications

Zarr-Python, Release 2.17.1

(continued from previous page)

"zarr_format": 1

Inspect the array attributes:

>>> print(open('example.zarr/attrs').read())

{}

Set some data:

>>> z = zarr.Array(store)

>>> z[0:10, 0:10] =1

>>> sorted(os.listdir('example.zarr'))
['0.0', 'attrs', 'meta']

Set some more data:

>>> z[0:10, 10:20] = 2

>>> z[10:20, :] = 3

>>> sorted(os.listdir('example.zarr'))
['0.0', '®.1"', "1.0", "1.1', 'attrs', 'meta']

Manually decompress a single chunk for illustration:

>>> import zlib

>>> b = zlib.decompress(open('example.zarr/0.0"', 'rb').read())
>>> import numpy as np

>>> a = np.frombuffer(b, dtype='<id")

>>> a

array(f1, 1,
i, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1, 1, 1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1,1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

Modity the array attributes:

>>> z.attrs['foo'] 42

>>> z.attrs['bar'] = 'apples'

>>> z.attrs['baz'] = [1, 2, 3, 4]

>>> print(open('example.zarr/attrs').read())

{
"bar": "apples",
"baz": [
1,
2y
3,
4
e
"foo": 42
}

4.3. Zarr Storage Specification Version 1 131

Zarr-Python, Release 2.17.1

132 Chapter 4. Specifications

CHAPTER
FIVE

RELEASE NOTES

5.1 Unreleased

5.2 2.17.1

5.2.1 Enhancements

» Change occurrences of % and format() to f-strings. By Dimitri Papadopoulos Orfanos #1423.
* Proper argument for numpy.reshape. By Dimitri Papadopoulos Orfanos #1425.

* Add typing to dimension separator arguments. By David Stansby #1620.

5.2.2 Docs

o ZIP related tweaks. By Davis Bennett #1641.

5.2.3 Maintenance

» Update config.yml with Zulip. By Josh Moore.
* Replace Gitter with the new Zulip Chat link. By Sanket Verma #1685.
 Fix RTD build. By Sanket Verma #1694.

5.3 2.17.0

5.3.1 Enhancements

* Added type hints to zarr.creation.create(). By David Stansby #1536.

* Pyodide support: Don’t require fasteners on Emscripten. By Hood Chatham #1663.

133

https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1423
https://github.com/sponsors/DmitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1425
https://github.com/sponsors/dstansby
https://github.com/zarr-developers/zarr-python/issues/1620
https://github.com/sponsors/d-v-b
https://github.com/zarr-developers/zarr-python/issues/1641
https://github.com/sponsors/joshmoore
https://github.com/sponsors/msankeys963
https://github.com/zarr-developers/zarr-python/issues/1685
https://github.com/sponsors/msankeys963
https://github.com/zarr-developers/zarr-python/issues/1694
https://github.com/sponsors/dstansby
https://github.com/zarr-developers/zarr-python/issues/1536
https://github.com/sponsors/hoodmane
https://github.com/zarr-developers/zarr-python/issues/1663

Zarr-Python, Release 2.17.1

5.3.2 Docs

* Minor correction and changes in documentation. By Sanket Verma #1509.

* Fix typo in documentation. By Dimitri Papadopoulos Orfanos #1554

* The documentation build now fails if there are any warnings. By David Stansby #1548.

* Add links to numcodecs docs in the tutorial. By David Stansby #1535.

* Enable offline formats for documentation builds. By Sanket Verma #1551.

* Minor tweak to advanced indexing tutorial examples. By Ross Barnowski #1550.

* Automatically document array members using sphinx-automodapi. By David Stansby #1547.

* Add a markdown file documenting the current and former core-developer team. By Joe Hamman #1628.
¢ Add Norman Rzepka to core-dev team. By Joe Hamman #1630.

* Added section about accessing ZIP archives on s3. By Jeff Peck #1613, #1615, and Davis Bennett #1641.

* Add V3 roadmap and design document. By Joe Hamman #1583.

5.3.3 Maintenance

* Drop Python 3.8 and NumPy 1.20 By Josh Moore; #1557.

* Cache result of FSStore._fsspec_installed(). By Janick Martinez Esturo #1581.

» Extend copyright notice to 2023. By Jack Kelly #1528.

* Change occurrence of io.open() into open(). By Dimitri Papadopoulos Orfanos #1421.

* Preserve dimension_separator when resizing arrays. By Ziwen Liu #1533.

* Initialise some sets in tests with set literals instead of list literals. By Dimitri Papadopoulos Orfanos #1534.
* Allow black code formatter to be run with any Python version. By David Stansby #1549.

¢ Remove sphinx-rtd-theme dependency from pyproject.toml. By Sanket Verma #1563.

* Remove CODE_OF_CONDUCT .md file from the Zarr-Python repository. By Sanket Verma #1572.

* Bump version of black in pre-commit. By David Stansby #1559.

* Use list comprehension where applicable. By Dimitri Papadopoulos Orfanos #1555.

 Use format specification mini-language to format string. By Dimitri Papadopoulos Orfanos #1558.
* Single startswith() call instead of multiple ones. By Dimitri Papadopoulos Orfanos #1556.

* Move codespell options around. By Dimitri Papadopoulos Orfanos #1196.

* Remove unused mypy ignore comments. By David Stansby #1602.

134 Chapter 5. Release notes

https://github.com/sponsors/MSanKeys963
https://github.com/zarr-developers/zarr-python/issues/1509
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1554
https://github.com/sponsors/dstansby
https://github.com/zarr-developers/zarr-python/issues/1548
https://github.com/sponsors/dstansby
https://github.com/zarr-developers/zarr-python/issues/1535
https://github.com/sponsors/MSanKeys963
https://github.com/zarr-developers/zarr-python/issues/1551
https://github.com/sponsors/rossbar
https://github.com/zarr-developers/zarr-python/issues/1550
https://github.com/sponsors/dstansby
https://github.com/zarr-developers/zarr-python/issues/1547
https://github.com/sponsors/jhamman
https://github.com/zarr-developers/zarr-python/issues/1628
https://github.com/sponsors/jhamman
https://github.com/zarr-developers/zarr-python/issues/1630
https://github.com/sponsors/jeffpeck10x
https://github.com/zarr-developers/zarr-python/issues/1613
https://github.com/zarr-developers/zarr-python/issues/1615
https://github.com/sponsors/d-v-b
https://github.com/zarr-developers/zarr-python/issues/1641
https://github.com/sponsors/jhamman
https://github.com/zarr-developers/zarr-python/issues/1583
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/1557
https://github.com/sponsors/ph03
https://github.com/zarr-developers/zarr-python/issues/1581
https://github.com/sponsors/JackKelly
https://github.com/zarr-developers/zarr-python/issues/1528
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1421
https://github.com/sponsors/ziw-liu
https://github.com/zarr-developers/zarr-python/issues/1533
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1534
https://github.com/sponsors/dstansby
https://github.com/zarr-developers/zarr-python/issues/1549
https://github.com/sponsors/MSanKeys963
https://github.com/zarr-developers/zarr-python/issues/1563
https://github.com/sponsors/MSanKeys963
https://github.com/zarr-developers/zarr-python/issues/1572
https://github.com/sponsors/dtstansby
https://github.com/zarr-developers/zarr-python/issues/1559
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1555
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1558
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1556
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1196
https://github.com/sponsors/dtstansby
https://github.com/zarr-developers/zarr-python/issues/1602

Zarr-Python, Release 2.17.1

5.4 2.16.1

5.4.1 Maintenance

* Require setuptools_scm version 1.5.4+ By John A. Kirkham #1477.
¢ Add docs requirements to pyproject.toml By John A. Kirkham #1494.
* Fixed caching issue in LRUStoreCache. By Mads R. B. Kristensen #1499.

5.5 2.16.0

5.5.1 Enhancements

* Allow for partial codec specification in V3 array metadata. By Joe Hamman #1443.
e Add __contains__ method to KVStore. By Christoph Gohlke #1454.
* Block Indexing: Implemented blockwise (chunk blocks) indexing to zarr.Array. By Altay Sansal #1428

5.5.2 Maintenance

* Refactor the core array tests to reduce code duplication. By Davis Bennett #1462.
* Style the codebase with ruff and black. By Davis Bennett #1459

* Ensure that chunks is tuple of ints upon array creation. By Philipp Hanslovsky #1461

5.6 2.15.0

5.6.1 Enhancements

* Implement more extensive fallback of getitem/setitem for orthogonal indexing. By Andreas Albert #1029.
* Getitems supports meta_array. By Mads R. B. Kristensen #1131.

e open_array () now takes the meta_array argument. By Mads R. B. Kristensen #1396.

5.6.2 Maintenance

* Remove codecov from GitHub actions. By John A. Kirkham #1391
* Replace np.product with np.prod due to deprecation. By James Bourbeau #1405.
 Activate Py 3.11 builds. By Joe Hamman #1415.

5.4. 2.16.1 135

https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/1477
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/1494
https://github.com/sponsors/madsbk
https://github.com/zarr-developers/zarr-python/issues/1499
https://github.com/sponsors/jhamman
https://github.com/zarr-developers/zarr-python/issues/1443
https://github.com/sponsors/cgohlke
https://github.com/zarr-developers/zarr-python/issues/1454
https://github.com/sponsors/tasansal
https://github.com/zarr-developers/zarr-python/issues/1428
https://github.com/sponsors/d-v-b
https://github.com/zarr-developers/zarr-python/issues/1462
https://github.com/sponsors/d-v-b
https://github.com/zarr-developers/zarr-python/issues/1459
https://github.com/sponsors/hanslovsky
https://github.com/zarr-developers/zarr-python/issues/1461
https://github.com/sponsors/AndreasAlbertQC
https://github.com/zarr-developers/zarr-python/issues/1029
https://github.com/sponsors/madsbk
https://github.com/zarr-developers/zarr-python/issues/1131
https://github.com/sponsors/madsbk
https://github.com/zarr-developers/zarr-python/issues/1396
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/1391
https://github.com/sponsors/jrbourbeau
https://github.com/zarr-developers/zarr-python/issues/1405
https://github.com/sponsors/jhamman
https://github.com/zarr-developers/zarr-python/issues/1415

Zarr-Python, Release 2.17.1

5.6.3 Documentation

* Add API reference for V3 Implementation in the docs. By Sanket Verma #1345.

5.6.4 Bug fixes

* Fix the conda-forge error. Read #1347 for detailed info. By Josh Moore #1364 and #1367.
* Fix ReadOnlyError when opening V3 store via fsspec reference file system. By Joe Hamman #1383.

* Fix normalize_fill_value for structured arrays. By Alan Du #1397.

5.7 2.14.2
5.7.1 Bug fixes

* Ensure zarr.group uses writeable mode to fix issue with #1304. By Brandur Thorgrimsson #1354.
5.8 2.14.1

5.8.1 Documentation

* Fix API links. By Josh Moore #1346.

* Fix unit tests which prevented the conda-forge release. By Josh Moore #1348.

5.9 2.14.0

5.9.1 Major changes

e Improve Zarr V3 support, adding partial store read/write and storage transformers. Add new features from the
v3 spec:

storage transformers

get_partial_values and set_partial_values

efficient get_partial_values implementation for F'SStoreV3

sharding storage transformer
By Jonathan Striebel; #1096, #1111.

¢ N5 nows supports Blosc. Remove warnings emitted when using N5Store or NSFSStore with a blosc-compressed
array. By Davis Bennett; #1331.

136 Chapter 5. Release notes

https://github.com/sponsors/MSanKeys963
https://github.com/zarr-developers/zarr-python/issues/1345
https://github.com/zarr-developers/zarr-python/issues/1347
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/1364
https://github.com/zarr-developers/zarr-python/issues/1367
https://github.com/sponsors/jhamman
https://github.com/zarr-developers/zarr-python/issues/1383
https://github.com/sponsors/alanhdu
https://github.com/zarr-developers/zarr-python/issues/1397
https://github.com/zarr-developers/zarr-python/issues/1304
https://github.com/sponsors/swordcat
https://github.com/zarr-developers/zarr-python/issues/1354
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/1346
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/1348
https://zarr-specs.readthedocs.io/en/latest/core/v3.0.html
https://github.com/sponsors/jstriebel
https://github.com/zarr-developers/zarr-python/issues/1096
https://github.com/zarr-developers/zarr-python/issues/1111
https://github.com/sponsors/d-v-b
https://github.com/zarr-developers/zarr-python/issues/1331

Zarr-Python, Release 2.17.1

5.9.2 Bug fixes

* Allow reading utf-8 encoded json files By Nathan Zimmerberg #1308.
 Ensure contiguous data is give to FSStore. Only copying if needed. By Mads R. B. Kristensen #1285.

* NestedDirectoryStore.listdir now returns chunk keys with the correct °/” dimension_separator. By Brett Graham
#1334,

N5Store/NSFSStore dtype returns zarr Stores readable dtype. By Marwan Zouinkhi #1339.

5.10 2.13.6

5.10.1 Maintenance

* Bump gh-action-pypi-publish to 1.6.4. By Josh Moore #1320.

5.11 2.13.5

5.11.1 Bug fixes

* Ensure zarr.create uses writeable mode to fix issue with #1304. By James Bourbeau #1309.

5.12 2.13.4

5.12.1 Appreciation

Special thanks to Outreachy participants for contributing to most of the maintenance PRs. Please read the
blog post summarising the contribution phase and welcoming new Outreachy interns: https://zarr.dev/blog/
welcoming-outreachy-2022-interns/

5.12.2 Enhancements

* Handle fsspec.FSMap using FSStore store. By Rafal Wojdyla #1304.

5.12.3 Bug fixes
* Fix bug that caused double counting of groups in groups() and group_keys() methods with V3 stores. By
Ryan Abernathey #1228.
* Remove unnecessary calling of contains_array for key that ended in .array.json. By Joe Hamman #1149.

* Fix bug that caused double counting of groups in groups() and group_keys() methods with V3 stores. By
Ryan Abernathey #1228.

5.10. 2.13.6 137

https://github.com/sponsors/nhz2
https://github.com/zarr-developers/zarr-python/issues/1308
https://github.com/sponsors/madsbk
https://github.com/zarr-developers/zarr-python/issues/1285
https://github.com/sponsors/braingram
https://github.com/zarr-developers/zarr-python/issues/1334
https://github.com/sponsors/mzouink
https://github.com/zarr-developers/zarr-python/issues/1339
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/1320
https://github.com/zarr-developers/zarr-python/issues/1304
https://github.com/sponsors/jrbourbeau
https://github.com/zarr-developers/zarr-python/issues/1309
https://zarr.dev/blog/welcoming-outreachy-2022-interns/
https://zarr.dev/blog/welcoming-outreachy-2022-interns/
https://github.com/sponsors/ravwojdyla
https://github.com/zarr-developers/zarr-python/issues/1304
https://github.com/sponsors/rabernat
https://github.com/zarr-developers/zarr-python/issues/1228
https://github.com/sponsors/jhamman
https://github.com/zarr-developers/zarr-python/issues/1149
https://github.com/sponsors/rabernat
https://github.com/zarr-developers/zarr-python/issues/1228

Zarr-Python, Release 2.17.1

5.12.4 Documentation

» Fix minor indexing errors in tutorial and specification examples of documentation. By Kola Babalola #1277.
* Add requirements_rtfd.txt in contributing.rst. By AWA BRANDON AWA #1243.

* Add documentation for find/findall using visit. By Weddy Gikunda #1241.

* Refresh of the main landing page. By Josh Moore #1173.

5.12.5 Maintenance

e Migrate to pyproject.toml and remove redundant infrastructure. By Saransh Chopra #1158.

* Require setuptools 64.0.0+ By Saransh Chopra #1193.

* Pin action versions (pypi-publish, setup-miniconda) for dependabot By Saransh Chopra #1205.

* Remove tox support By Saransh Chopra #1219.

* Add workflow to label PRs with “needs release notes”. By Saransh Chopra #1239.

 Simplify if/else statement. By Dimitri Papadopoulos Orfanos #1227.

* Get coverage up to 100%. By John Kirkham #1264.

* Migrate coverage to pyproject.toml. By John Kirkham #1250.

* Use conda-incubator/setup-miniconda@v2.2.0. By John Kirkham #1263.

* Delete unused files. By John Kirkham #1251.

 Skip labeller for bot PRs. By Saransh Chopra #1271.

* Restore Flake8 configuration. By John Kirkham #1249.

* Add missing newline at EOF. By @Dimitri Papadopoulos #1253.

* Add license_files to pyproject.toml. By John Kirkham #1247.

* Adding pyupgrade suggestions. By Dimitri Papadopoulos Orfanos #1225.

* Fixed some linting errors. By Weddy Gikunda #1226.

* Added the link to main website in readthedocs sidebar. By Stephanie_nkwatoh #1216.

* Remove redundant wheel dependency in pyproject.toml. By Dimitri Papadopoulos Orfanos #1233.
 Turned on isloated_build in tox.ini file. By AWA BRANDON AWA #1210.

* Fixed flake8 alert and avoid duplication of Zarr Developers. By Dimitri Papadopoulos Orfanos #1203.
* Bump to NumPy 1.20+ in environment.yml. By John Kirkham #1201.

* Bump to NumPy 1.20 in pyproject.toml. By Dimitri Papadopoulos Orfanos #1192.

* Remove LGTM (.Igtm.yml) configuration file. By Dimitri Papadopoulos Orfanos #1191.

» Codespell will skip fixture in pre-commit. By Dimitri Papadopoulos Orfanos #1197.

* Add msgpack in requirements_rtfd.txt. By Emmanuel Bolarinwa #1188.

¢ Added license to docs fixed a typo from _spec_v2 to _spec_v3. By AWA BRANDON AWA #1182.
* Fixed installation link in README.md. By AWA BRANDON AWA #1177.

¢ Fixed typos in installation.rst and release.rst. By Chizoba Nweke #1178.

138 Chapter 5. Release notes

https://github.com/sponsors/sprynt001
https://github.com/zarr-developers/zarr-python/issues/1277
https://github.com/sponsors/DON-BRAN
https://github.com/zarr-developers/zarr-python/issues/1243
https://github.com/sponsors/caviere
https://github.com/zarr-developers/zarr-python/issues/1241
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/1173
https://github.com/sponsors/Saransh-cpp
https://github.com/zarr-developers/zarr-python/issues/1158
https://github.com/sponsors/Saransh-cpp
https://github.com/zarr-developers/zarr-python/issues/1193
https://github.com/sponsors/Saransh-cpp
https://github.com/zarr-developers/zarr-python/issues/1205
https://github.com/sponsors/Saransh-cpp
https://github.com/zarr-developers/zarr-python/issues/1219
https://github.com/sponsors/Saransh-cpp
https://github.com/zarr-developers/zarr-python/issues/1239
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1227
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/1264
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/1250
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/1263
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/1251
https://github.com/sponsors/Saransh-cpp
https://github.com/zarr-developers/zarr-python/issues/1271
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/1249
https://github.com/sponsors/Dimitri Papadopoulos
https://github.com/zarr-developers/zarr-python/issues/1253
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/1247
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1225
https://github.com/sponsors/caviere
https://github.com/zarr-developers/zarr-python/issues/1226
https://github.com/sponsors/steph237
https://github.com/zarr-developers/zarr-python/issues/1216
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1233
https://github.com/sponsors/DON-BRAN
https://github.com/zarr-developers/zarr-python/issues/1210
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1203
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/1201
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1192
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1191
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1197
https://github.com/sponsors/GbotemiB
https://github.com/zarr-developers/zarr-python/issues/1188
https://github.com/sponsors/DON-BRAN
https://github.com/zarr-developers/zarr-python/issues/1182
https://github.com/sponsors/DON-BRAN
https://github.com/zarr-developers/zarr-python/issues/1177
https://github.com/sponsors/zobbs-git
https://github.com/zarr-developers/zarr-python/issues/1178

Zarr-Python, Release 2.17.1

* Set docs/conf.py language to en. By AWA BRANDON AWA #1174.
Added installation.rst to the docs. By AWA BRANDON AWA #1170.

* Adjustment of year to 2015-2018 to 2015-2022 in the docs. By Emmanuel Bolarinwa #1165.

Updated Forking the repository section in contributing.rst. By AWA BRANDON AWA #1171.

Updated GitHub actions. By Dimitri Papadopoulos Orfanos #1134.
» Update web links: http:// — https://. By Dimitri Papadopoulos Orfanos #1313.

5.13 2.13.3

* Improve performance of slice selections with steps by omitting chunks with no relevant data. By Richard Shaw
#843.

5.14 2.13.2

* Fix test failure on conda-forge builds (again). By Josh Moore; see zarr-feedstock#65.

5.15 2.13.1

* Fix test failure on conda-forge builds. By Josh Moore; see zarr-feedstock#65.

5.16 2.13.0

5.16.1 Major changes

¢ Support of alternative array classes by introducing a new argument, meta_array, that specifies the type/class of
the underlying array. The meta_array argument can be any class instance that can be used as the like argument in
NumPy (see NEP 35). enabling support for CuPy through, for example, the creation of a CuPy CPU compressor.
By Mads R. B. Kristensen #934.

* Remove support for Python 3.7 in concert with NumPy dependency. By Davis Bennett #1067.

e Zarr v3: add support for the default root path rather than requiring that all API users pass an explicit path.
By Gregory R. Lee #1085, #1142.

5.16.2 Bug fixes

* Remove/relax erroneous “meta” path check (regression). By Gregory R. Lee #1123.
 Cast all attribute keys to strings (and issue deprecation warning). By Mattia Almansi #1066.

 Fix bug in N5 storage that prevented arrays located in the root of the hierarchy from bearing the n5 keyword.
Along with fixing this bug, new tests were added for N5 routines that had previously been excluded from testing,
and type annotations were added to the N5 codebase. By Davis Bennett #1092.

 Fix bug in LRUEStoreCache in which the current size wasn’t reset on invalidation. By BGCMHou and Josh
Moore #1076, #1077.

5.13. 2.13.3 139

https://github.com/sponsors/DON-BRAN
https://github.com/zarr-developers/zarr-python/issues/1174
https://github.com/sponsors/DON-BRAN
https://github.com/zarr-developers/zarr-python/issues/1170
https://github.com/sponsors/GbotemiB
https://github.com/zarr-developers/zarr-python/issues/1165
https://github.com/sponsors/DON-BRAN
https://github.com/zarr-developers/zarr-python/issues/1171
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1134
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1313
https://github.com/sponsors/jrs65
https://github.com/zarr-developers/zarr-python/issues/843
https://github.com/sponsors/joshmoore
https://github.com/conda-forge/zarr-feedstock/pull/65
https://github.com/sponsors/joshmoore
https://github.com/conda-forge/zarr-feedstock/pull/65
https://numpy.org/neps/nep-0035-array-creation-dispatch-with-array-function.html
https://github.com/sponsors/madsbk
https://github.com/zarr-developers/zarr-python/issues/934
https://github.com/sponsors/d-v-b
https://github.com/zarr-developers/zarr-python/issues/1067
https://github.com/sponsors/grlee77
https://github.com/zarr-developers/zarr-python/issues/1085
https://github.com/zarr-developers/zarr-python/issues/1142
https://github.com/sponsors/grlee77
https://github.com/zarr-developers/zarr-python/issues/1123
https://github.com/sponsors/malmans2
https://github.com/zarr-developers/zarr-python/issues/1066
https://github.com/sponsors/d-v-b
https://github.com/zarr-developers/zarr-python/issues/1092
https://github.com/sponsors/BGCMHou
https://github.com/sponsors/joshmoore
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/1076
https://github.com/zarr-developers/zarr-python/issues/1077

Zarr-Python, Release 2.17.1

* Remove erroneous check that disallowed array keys starting with “meta”. By Gregory R. Lee #1105.

5.16.3 Documentation

* Typo fixes to close quotes. By Pavithra Eswaramoorthy

* Added copy button to documentation. By Altay Sansal #1124.

5.16.4 Maintenance

» Simplify release docs. By Josh Moore #1119.

» Pin werkzeug to prevent test hangs. By Davis Bennett #1098.

* Fix a few DeepSource.io alerts By Dimitri Papadopoulos Orfanos #1080.
 Fix URLs. By Dimitri Papadopoulos Orfanos, #1074.

* Fix spelling. By Dimitri Papadopoulos Orfanos, #1073.

» Update GitHub issue templates with YAML format. By Saransh Chopra #1079.
* Remove option to return None from _ensure_store. By Gregory Lee #1068.

* Fix a typo of “integers”. By Richard Scott #1056.

5.17 2.12.0

5.17.1 Enhancements

* Add support for reading and writing Zarr V3. The new zarr._store.v3 package has the necessary classes and
functions for evaluating Zarr V3. Since the format is not yet finalized, the classes and functions are not automat-
ically imported into the regular zarr name space. Setting the ZARR_V3_EXPERIMENTAL_API environment
variable will activate them. By Gregory Lee; #898, #1006, and #1007 as well as by Josh Moore #1032.

* Create FSStore from an existing fsspec filesystem. If you have created an fsspec filesystem outside of Zarr,
you can now pass it as a keyword argument to FSStore. By Ryan Abernathey; #911.

* Add numpy encoder class for json.dumps By Eric Prestat; #933.
* Appending performance improvement to Zarr arrays, e.g., when writing to S3. By hailiangzhang; #1014.

e Add number encoder for json.dumps to support numpy integers in chunks arguments. By Eric Prestat #697.

5.17.2 Bug fixes

* Fix bug that made it impossible to create an FSStore on unlistable filesystems (e.g. some HTTP servers). By
Ryan Abernathey; #993.

140 Chapter 5. Release notes

https://github.com/sponsors/grlee77
https://github.com/zarr-developers/zarr-python/issues/1105
https://github.com/sponsors/pavithraes
https://github.com/sponsors/tasansal
https://github.com/zarr-developers/zarr-python/issues/1124
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/1119
https://github.com/sponsors/d-v-b
https://github.com/zarr-developers/zarr-python/issues/1098
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1080
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1074
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/1073
https://github.com/sponsors/Saransh-cpp
https://github.com/zarr-developers/zarr-python/issues/1079
https://github.com/sponsors/grlee77
https://github.com/zarr-developers/zarr-python/issues/1068
https://github.com/sponsors/RichardScottOZ
https://github.com/zarr-developers/zarr-python/issues/1056
https://github.com/sponsors/grlee77
https://github.com/zarr-developers/zarr-python/issues/898
https://github.com/zarr-developers/zarr-python/issues/1006
https://github.com/zarr-developers/zarr-python/issues/1007
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/1032
https://github.com/sponsors/rabernat
https://github.com/zarr-developers/zarr-python/issues/911
https://github.com/sponsors/ericpre
https://github.com/zarr-developers/zarr-python/issues/933
https://github.com/sponsors/hailiangzhang
https://github.com/zarr-developers/zarr-python/issues/1014
https://github.com/sponsors/ericpre
https://github.com/zarr-developers/zarr-python/issues/697
https://github.com/sponsors/rabernat
https://github.com/zarr-developers/zarr-python/issues/993

Zarr-Python, Release 2.17.1

5.17.3 Documentation

» Update resize doc to clarify surprising behavior. By hailiangzhang; #1022.

5.17.4 Maintenance

* Added Pre-commit configuration, incl. Yaml Check. By Shivank Chaudhary; #1015, #1016.
* Fix URL to renamed file in Blosc repo. By Andrew Thomas #1028.
* Activate Py 3.10 builds. By Josh Moore #1027.

¢ Make all unignored zarr warnings errors. By Josh Moore #1021.

5.18 2.11.3

5.18.1 Bug fixes

* Fix missing case to fully revert change to default write_empty_chunks. By Tom White; #1005.

5.19 2.11.2

5.19.1 Bug fixes

* Changes the default value of write_empty_chunks to True to prevent unanticipated data losses when the data
types do not have a proper default value when empty chunks are read back in. By Vyas Ramasubramani; #965,
#1001.

5.20 2.11.1

5.20.1 Bug fixes

* Fix bug where indexing with a scalar numpy value returned a single-value array. By Ben Jeffery #967.

* Removed clobber argument from normalize_store_arg. This enables to change data within an opened consoli-
dated group using mode “r4” (i.e region write). By Tobias Kolling #975.

5.21 2.11.0

5.21.1 Enhancements

» Sparse changes with performance impact! One of the advantages of the Zarr format is that it is sparse, which
means that chunks with no data (more precisely, with data equal to the fill value, which is usually 0) don’t need
to be written to disk at all. They will simply be assumed to be empty at read time. However, until this release, the
Zarr library would write these empty chunks to disk anyway. This changes in this version: a small performance
penalty at write time leads to significant speedups at read time and in filesystem operations in the case of sparse

5.18. 2.11.3 141

https://github.com/sponsors/hailiangzhang
https://github.com/zarr-developers/zarr-python/issues/1022
https://github.com/sponsors/Alt-Shivam
https://github.com/zarr-developers/zarr-python/issues/1015
https://github.com/zarr-developers/zarr-python/issues/1016
https://github.com/sponsors/amcnicho
https://github.com/zarr-developers/zarr-python/issues/1028
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/1027
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/1021
https://github.com/sponsors/tomwhite
https://github.com/zarr-developers/zarr-python/issues/1005
https://github.com/sponsors/vyasr
https://github.com/zarr-developers/zarr-python/issues/965
https://github.com/zarr-developers/zarr-python/issues/1001
https://github.com/sponsors/benjeffery
https://github.com/zarr-developers/zarr-python/issues/967
https://github.com/sponsors/d70-t
https://github.com/zarr-developers/zarr-python/issues/975

Zarr-Python, Release 2.17.1

arrays. To revert to the old behavior, pass the argument write_empty_chunks=True to the array creation
function. By Juan Nunez-Iglesias; #853 and Davis Bennett; #738.

Fancy indexing. Zarr arrays now support NumPy-style fancy indexing with arrays of integer coordinates. This is
equivalent to using zarr.Array.vindex. Mixing slices and integer arrays is not supported. By Juan Nunez-Iglesias;
#725.

New base class. This release of Zarr Python introduces a new BaseStore class that all provided store classes
implemented in Zarr Python now inherit from. This is done as part of refactoring to enable future support of
the Zarr version 3 spec. Existing third-party stores that are a MutableMapping (e.g. dict) can be converted
to a new-style key/value store inheriting from BaseStore by passing them as the argument to the new zarr.
storage.KVStore class. For backwards compatibility, various higher-level array creation and convenience
functions still accept plain Python dicts or other mutable mappings for the store argument, but will internally
convert these to a KVStore. By Gregory Lee; #839, #789, and #950.

Allow to assign array £i11_values and update metadata accordingly. By Ryan Abernathey, #662.

Allow to update array fill_values By Matthias Bussonnier #665.

5.21.2 Bug fixes

Fix bug where the checksum of zipfiles is wrong By Oren Watson #930.
Fix consolidate_metadata with FSStore. By Joe Hamman #916.

Unguarded next inside generator. By Dimitri Papadopoulos Orfanos #889.

5.21.3 Documentation

Update docs creation of dev env. By Ray Bell #921.

Update docs to use python -m pytest. By Ray Bell #923.

Fix versionadded tag in zarr.core.Array docstring. By Juan Nunez-Iglesias #852.
Doctest seem to be stricter now, updating tostring() to tobytes(). By John Kirkham #907.
Minor doc fix. By Mads R. B. Kristensen #937.

5.21.4 Maintenance

Upgrade MongoDB in test env. By Joe Hamman #939.

Pass dimension_separator on fixture generation. By Josh Moore #858.
Activate Python 3.9 in GitHub Actions. By Josh Moore #859.

Drop shortcut £sspec[s3] for dependency. By Josh Moore #920.

and a swath of code-linting improvements by Dimitri Papadopoulos Orfanos:

Unnecessary comprehension (#899)

Unnecessary None provided as default (#900)

use an if expression instead of and/or (#888)

Remove unnecessary literal (#891)

Decorate a few method with @staticmethod (#885)

142

Chapter 5. Release notes

https://github.com/sponsors/jni
https://github.com/zarr-developers/zarr-python/issues/853
https://github.com/sponsors/d-v-b
https://github.com/zarr-developers/zarr-python/issues/738
https://github.com/sponsors/jni
https://github.com/zarr-developers/zarr-python/issues/725
https://github.com/sponsors/grlee77
https://github.com/zarr-developers/zarr-python/issues/839
https://github.com/zarr-developers/zarr-python/issues/789
https://github.com/zarr-developers/zarr-python/issues/950
https://github.com/sponsors/rabernat
https://github.com/zarr-developers/zarr-python/issues/662
https://github.com/sponsors/Carreau
https://github.com/zarr-developers/zarr-python/issues/665
https://github.com/sponsors/orenwatson
https://github.com/zarr-developers/zarr-python/issues/930
https://github.com/sponsors/jhamman
https://github.com/zarr-developers/zarr-python/issues/916
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/889
https://github.com/sponsors/raybellwaves
https://github.com/zarr-developers/zarr-python/issues/921
https://github.com/sponsors/raybellwaves
https://github.com/zarr-developers/zarr-python/issues/923
https://github.com/sponsors/jni
https://github.com/zarr-developers/zarr-python/issues/852
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/907
https://github.com/sponsors/madsbk
https://github.com/zarr-developers/zarr-python/issues/937
https://github.com/sponsors/jhamman
https://github.com/zarr-developers/zarr-python/issues/939
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/858
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/859
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/920
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/zarr-developers/zarr-python/issues/899
https://github.com/zarr-developers/zarr-python/issues/900
https://github.com/zarr-developers/zarr-python/issues/888
https://github.com/zarr-developers/zarr-python/issues/891
https://github.com/zarr-developers/zarr-python/issues/885

Zarr-Python, Release 2.17.1

— Drop unneeded return (#884)

— Drop explicit object inheritance from class-es (#886)

— Unnecessary comprehension (#883)

— Codespell configuration (#882)

— Fix typos found by codespell (#880)

— Proper C-style formatting for integer (#913)

— Add LGTM.com / DeepSource.io configuration files (#909)

5.22 2.10.3

5.22.1 Bug fixes

¢ N5 keywords now emit UserWarning instead of raising a ValueError. By Boaz Mohar; #860.

blocks_to_decompress not used in read_part function. By Boaz Mohar; #861.
* defines blocksize for array, updates hexdigest values. By Andrew Fulton; #867.

* Fix test failure on Debian and conda-forge builds. By Josh Moore; #871.

5.23 2.10.2

5.23.1 Bug fixes

* Fix NestedDirectoryStore datasets without dimension_separator metadata. By Josh Moore; #850.

5.24 2.10.1

5.24.1 Bug fixes

* Fix regression by setting normalize_keys=False in fsstore constructor. By Davis Bennett; #842.

5.25 2.10.0

5.25.1 Enhancements

¢ Add N5FSStore. By Davis Bennett; #793.

5.22. 2.10.3 143

https://github.com/zarr-developers/zarr-python/issues/884
https://github.com/zarr-developers/zarr-python/issues/886
https://github.com/zarr-developers/zarr-python/issues/883
https://github.com/zarr-developers/zarr-python/issues/882
https://github.com/zarr-developers/zarr-python/issues/880
https://github.com/zarr-developers/zarr-python/issues/913
https://github.com/zarr-developers/zarr-python/issues/909
https://github.com/sponsors/boazmohar
https://github.com/zarr-developers/zarr-python/issues/860
https://github.com/sponsors/boazmohar
https://github.com/zarr-developers/zarr-python/issues/861
https://github.com/sponsors/andrewfulton9
https://github.com/zarr-developers/zarr-python/issues/867
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/871
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/850
https://github.com/sponsors/d-v-b
https://github.com/zarr-developers/zarr-python/issues/842
https://github.com/sponsors/d-v-b
https://github.com/zarr-developers/zarr-python/issues/793

Zarr-Python, Release 2.17.1

5.25.2 Bug fixes
* Ignore None dim_separators in save_array. By Josh Moore; #831.
5.26 2.9.5
5.26.1 Bug fixes
* Fix FSStore.listdir behavior for nested directories. By Gregory Lee; #802.
5.27 2.9.4
5.27.1 Bug fixes
* Fix structured arrays that contain objects By :user: Attila Bergou <abergou>; :issue: 806

5.28 2.9.3

5.28.1 Maintenance

e Mark the fact that some tests that require £sspec, without compromising the code coverage score. By Ben
Williams; #823.

* Only inspect alternate node type if desired isn’t present. By Trevor Manz; #696.

5.29 2.9.2

5.29.1 Maintenance

* Correct conda-forge deployment of Zarr by fixing some Zarr tests. By Ben Williams; #821.

5.30 2.9.1

5.30.1 Maintenance

 Correct conda-forge deployment of Zarr. By Josh Moore; #819.

144 Chapter 5. Release notes

https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/831
https://github.com/sponsors/grlee77
https://github.com/zarr-developers/zarr-python/issues/802
https://github.com/sponsors/benjaminhwilliams
https://github.com/sponsors/benjaminhwilliams
https://github.com/zarr-developers/zarr-python/issues/823
https://github.com/sponsors/manzt
https://github.com/zarr-developers/zarr-python/issues/696
https://github.com/sponsors/benjaminhwilliams
https://github.com/zarr-developers/zarr-python/issues/821
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/819

Zarr-Python, Release 2.17.1

5.31 2.9.0

This release of Zarr Python is the first release of Zarr to not support Python 3.6.

5.31.1 Enhancements
» Update ABSStore for compatibility with newer azure.storage.blob. By Tom Augspurger; #759.
* Pathlib support. By Chris Barnes; #768.

5.31.2 Documentation

* Clarify that arbitrary key/value pairs are OK for attributes. By Stephan Hoyer; #751.

¢ Clarify how to manually convert a DirectoryStore to a ZipStore. By pmav99; #763.

5.31.3 Bug fixes

* Fix dimension_separator support. By Josh Moore; #775.

» Extract ABSStore to zarr._storage.absstore. By Josh Moore; #781.

¢ avoid NumPy 1.21.0 due to https://github.com/numpy/numpy/issues/ 19325 By Gregory Lee; #791.
5.31.4 Maintenance

e Drop 3.6 builds. By Josh Moore; #774, #778.
* Fix build with Sphinx 4. By Elliott Sales de Andrade; #799.
e TST: add missing assert in test_hexdigest. By Gregory Lee; #801.

5.32 2.8.3

5.32.1 Bug fixes

» FSStore: default to normalize_keys=False By Josh Moore; #755.
* ABSStore: compatibility with azure.storage.python>=12 By Tom Augspurger; #618

5.33 2.8.2

5.33.1 Documentation

* Add section on rechunking to tutorial By David Baddeley; #730.

5.31. 2.9.0 145

https://github.com/sponsors/TomAugspurger
https://github.com/zarr-developers/zarr-python/issues/759
https://github.com/sponsors/clbarnes
https://github.com/zarr-developers/zarr-python/issues/768
https://github.com/sponsors/shoyer
https://github.com/zarr-developers/zarr-python/issues/751
https://github.com/sponsors/pmav99
https://github.com/zarr-developers/zarr-python/issues/763
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/775
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/781
https://github.com/numpy/numpy/issues/19325
https://github.com/sponsors/grlee77
https://github.com/zarr-developers/zarr-python/issues/791
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/774
https://github.com/zarr-developers/zarr-python/issues/778
https://github.com/sponsors/QuLogic
https://github.com/zarr-developers/zarr-python/issues/799
https://github.com/sponsors/grlee77
https://github.com/zarr-developers/zarr-python/issues/801
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/755
https://github.com/sponsors/tomaugspurger
https://github.com/zarr-developers/zarr-python/issues/618
https://github.com/sponsors/David-Baddeley
https://github.com/zarr-developers/zarr-python/issues/730

Zarr-Python, Release 2.17.1

5.33.2 Bug fixes

» Expand FSStore tests and fix implementation issues By Davis Bennett; #709.

5.33.3 Maintenance

» Updated ipytree warning for jlab3 By Ilan Hunt-Isaak; #721.

* b170a48a - (issue-728, copy-nested) Updated ipytree warning for jlab3 (#721) (3 weeks ago) <Ian Hunt-Isaak>
* Activate dependabot By Josh Moore; #734.

¢ Update Python classifiers (Zarr is stable!) By Josh Moore; #731.

5.34 2.8.1

5.34.1 Bug fixes

* raise an error if create_dataset’s dimension_separator is inconsistent By Gregory R. Lee; #724.

5.35 2.8.0
5.35.1 V2 Specification Update
¢ Introduce optional dimension_separator .zarray key for nested chunks. By Josh Moore; #715, #716.
5.36 2.7.1
5.36.1 Bug fixes
» Update Array to respect FSStore’s key_separator (#718) By Gregory R. Lee; #718.

5.37 2.7.0

5.37.1 Enhancements

* Start stop for iterator (islice()) By Sebastian Grill; #621.

* Add capability to partially read and decompress chunks By Andrew Fulton; #667.

146 Chapter 5. Release notes

https://github.com/sponsors/d-v-b
https://github.com/zarr-developers/zarr-python/issues/709
https://github.com/sponsors/ianhi
https://github.com/zarr-developers/zarr-python/issues/721
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/734
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/731
https://github.com/sponsors/grlee77
https://github.com/zarr-developers/zarr-python/issues/724
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/715
https://github.com/zarr-developers/zarr-python/issues/716
https://github.com/sponsors/grlee77
https://github.com/zarr-developers/zarr-python/issues/718
https://github.com/sponsors/yetyetanotherusername
https://github.com/zarr-developers/zarr-python/issues/621
https://github.com/sponsors/andrewfulton9
https://github.com/zarr-developers/zarr-python/issues/667

Zarr-Python, Release 2.17.1

5.37.2 Bug fixes

* Make DirectoryStore __setitem___ resilient against antivirus file locking By Eric Younkin; #698.
» Compare test data’s content generally By John Kirkham; #436.

* Fix dtype usage in zarr/meta.py By Josh Moore; #700.

* Fix FSStore key_seperator usage By Josh Moore; #669.

» Simplify text handling in DB Store By John Kirkham; #670.

* GitHub Actions migration By Matthias Bussonnier; #0641, #671, #674, #676, #677, #678, #679, #680, #682,
#0684, #685, #0686, #687, #0695, #706.

5.38 2.6.1

* Minor build fix By Matthias Bussonnier; #666.

5.39 2.6.0

This release of Zarr Python is the first release of Zarr to not support Python 3.5.
* End Python 3.5 support. By Chris Barnes; #602.
* Fix open_group/open_array to allow opening of read-only store with mode="r" #269
* Add Array tests for FSStore. By Andrew Fulton; :issue: 644.
* fix a bug in which attrs would not be copied on the root when using copy_all; #613
* Fix FileNotFoundError with dask/s3fs #649
* Fix flaky fixture in test_storage.py #652
* Fix FSStore getitems fails with arrays that have a 0 length shape dimension #644

e Use async to fetch/write result concurrently when possible. #536, See this comment for some performance
analysis showing order of magnitude faster response in some benchmark.

See this link for the full list of closed and merged PR tagged with the 2.6 milestone.

* Add ability to partially read and decompress arrays, see #667. It is only available to chunks stored using fsspec
and using Blosc as a compressor.

For certain analysis case when only a small portion of chunks is needed it can be advantageous to only access and
decompress part of the chunks. Doing partial read and decompression add high latency to many of the operation
so should be used only when the subset of the data is small compared to the full chunks and is stored contiguously
(that is to say either last dimensions for C layout, firsts for F). Pass partial_decompress=True as argument
when creating an Array, or when using open_array. No option exists yet to apply partial read and decompress
on a per-operation basis.

5.38. 2.6.1 147

https://github.com/sponsors/ericgyounkin
https://github.com/zarr-developers/zarr-python/issues/698
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/436
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/700
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/669
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/670
https://github.com/sponsors/Carreau
https://github.com/zarr-developers/zarr-python/issues/641
https://github.com/zarr-developers/zarr-python/issues/671
https://github.com/zarr-developers/zarr-python/issues/674
https://github.com/zarr-developers/zarr-python/issues/676
https://github.com/zarr-developers/zarr-python/issues/677
https://github.com/zarr-developers/zarr-python/issues/678
https://github.com/zarr-developers/zarr-python/issues/679
https://github.com/zarr-developers/zarr-python/issues/680
https://github.com/zarr-developers/zarr-python/issues/682
https://github.com/zarr-developers/zarr-python/issues/684
https://github.com/zarr-developers/zarr-python/issues/685
https://github.com/zarr-developers/zarr-python/issues/686
https://github.com/zarr-developers/zarr-python/issues/687
https://github.com/zarr-developers/zarr-python/issues/695
https://github.com/zarr-developers/zarr-python/issues/706
https://github.com/sponsors/Carreau
https://github.com/zarr-developers/zarr-python/issues/666
https://github.com/sponsors/clbarnes
https://github.com/zarr-developers/zarr-python/issues/602
https://github.com/zarr-developers/zarr-python/issues/269
https://github.com/sponsors/andrewfulton9
https://github.com/zarr-developers/zarr-python/issues/613
https://github.com/zarr-developers/zarr-python/issues/649
https://github.com/zarr-developers/zarr-python/issues/652
https://github.com/zarr-developers/zarr-python/issues/644
https://github.com/zarr-developers/zarr-python/issues/536
https://github.com/zarr-developers/zarr-python/issues/536#issuecomment-721253094
https://github.com/zarr-developers/zarr-python/milestone/11?closed=1
https://github.com/zarr-developers/zarr-python/issues/667

Zarr-Python, Release 2.17.1

5.40 2.5.0

This release will be the last to support Python 3.5, next version of Zarr will be Python 3.6+.

DirectoryStore now uses os.scandir, which should make listing large store faster, #563
Remove a few remaining Python 2-isms. By Poruri Sai Rahul; #393.
Fix minor bug in N5Store. By @gsakkis, #550.

Improve error message in Jupyter when trying to use the ipytree widget without ipytree installed. By Zain
Patel; #537

Add typing information to many of the core functions #589
Explicitly close stores during testing. By Elliott Sales de Andrade; #442

Many of the convenience functions to emit errors (err_* from zarr.errors have been replaced by ValueError
subclasses. The corresponding err_* function have been removed. #590, #614)

Improve consistency of terminology regarding arrays and datasets in the documentation. By Josh Moore; #571.

Added support for generic URL opening by £sspec, where the URLs have the form “protocol://[server]/path” or
can be chained URIs with “::” separators. The additional argument storage_options is passed to the backend,
see the £sspec docs. By Martin Durant; #546

Added support for fetching multiple items via getitems method of a store, if it exists. This allows for concurrent
fetching of data blocks from stores that implement this; presently HTTP, S3, GCS. Currently only applies to
reading. By Martin Durant; #606

Efficient iteration expanded with option to pass start and stop index via array.islice. By Sebastian Grill,
#015.

5.41 2.4.0

5.41.1 Enhancements

Add key normalization option for DirectoryStore, NestedDirectoryStore, TempStore, and N5Store. By
James Bourbeau; #459.

Add recurse keyword to Group.array_keys and Group.arrays methods. By James Bourbeau; #458.

Use uniform chunking for all dimensions when specifying chunks as an integer. Also adds support for specifying
-1 to chunk across an entire dimension. By James Bourbeau; #456.

Rename DictStore to MemoryStore. By James Bourbeau; #455.

Rewrite . tree() pretty representation to use ipytree. Allows it to work in both the Jupyter Notebook and
JupyterLab. By John Kirkham; #450.

Do not rename Blosc parameters in n5 backend and add blocksize parameter, compatible with n5-blosc. By
@axtimwalde, #485.

Update DirectoryStore to create files with more permissive permissions. By Eduardo Gonzalez and James
Bourbeau; #493

Use math.ceil for scalars. By John Kirkham; #500.
Ensure contiguous data using astype. By John Kirkham; #513.

Refactor out _tofile/_fromfile from DirectoryStore. By John Kirkham; #503.

148

Chapter 5. Release notes

https://github.com/zarr-developers/zarr-python/issues/563
https://github.com/sponsors/rahulporuri
https://github.com/zarr-developers/zarr-python/issues/393
https://github.com/sponsors/gsakkis
https://github.com/zarr-developers/zarr-python/issues/550
https://github.com/sponsors/mzjp2
https://github.com/sponsors/mzjp2
https://github.com/zarr-developers/zarr-python/issues/537
https://github.com/zarr-developers/zarr-python/issues/589
https://github.com/sponsors/QuLogic
https://github.com/zarr-developers/zarr-python/issues/442
https://github.com/zarr-developers/zarr-python/issues/590
https://github.com/zarr-developers/zarr-python/issues/614
https://github.com/sponsors/joshmoore
https://github.com/zarr-developers/zarr-python/issues/571
https://github.com/sponsors/martindurant
https://github.com/zarr-developers/zarr-python/issues/546
https://github.com/sponsors/martindurant
https://github.com/zarr-developers/zarr-python/issues/606
https://github.com/sponsors/yetyetanotherusername
https://github.com/zarr-developers/zarr-python/issues/615
https://github.com/sponsors/jrbourbeau
https://github.com/zarr-developers/zarr-python/issues/459
https://github.com/sponsors/jrbourbeau
https://github.com/zarr-developers/zarr-python/issues/458
https://github.com/sponsors/jrbourbeau
https://github.com/zarr-developers/zarr-python/issues/456
https://github.com/sponsors/jrbourbeau
https://github.com/zarr-developers/zarr-python/issues/455
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/450
https://github.com/sponsors/axtimwalde
https://github.com/zarr-developers/zarr-python/issues/485
https://github.com/sponsors/eddienko
https://github.com/sponsors/jrbourbeau
https://github.com/sponsors/jrbourbeau
https://github.com/zarr-developers/zarr-python/issues/493
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/500
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/513
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/503

Zarr-Python, Release 2.17.1

* Add __enter__/__exit__ methods to Group for h5py.File compatibility. By Chris Barnes; #5009.

5.41.2 Bug fixes

* Fix Sqlite Store Wrong Modification. By Tommy Tran; #440.

* Add intermediate step (using zipfile.ZipInfo object) to write inside ZipStore to solve too restrictive per-
mission issue. By Raphael Dussin; #505.

* Fix ‘" prepend bug in ABSStore. By Shikhar Goenka; #525.

5.41.3 Documentation

* Fix hyperlink in README.md. By Anderson Banihirwe; #531.

* Replace “nuimber” with “number”. By John Kirkham; #512.

* Fix azure link rendering in tutorial. By James Bourbeau; #507.

» Update README file to be more detailed. By Zain Patel; #495.

¢ Import blosc from numcodecs in tutorial. By James Bourbeau; #491.
* Adds logo to docs. By James Bourbeau; #462.

 Fix NS link in tutorial. By James Bourbeau; #480.

* Fix typo in code snippet. By Joe Jevnik; #461.

* Fix URLs to point to zarr-python By John Kirkham; #453.

5.41.4 Maintenance

¢ Add documentation build to CI. By James Bourbeau; #516.

* Use ensure_ndarray in a few more places. By John Kirkham; #506.

* Support Python 3.8. By John Kirkham; #499.

* Require Numcodecs 0.6.4+ to use text handling functionality from it. By John Kirkham; #497.
» Updates tests to use pytest.importorskip. By James Bourbeau; #492

* Removed support for Python 2. By @jhamman; #393, #470.

» Upgrade dependencies in the test matrices and resolve a compatibility issue with testing against the Azure Storage
Emulator. By @alimanfoo; #468, #467.

* Use unittest.mock on Python 3. By Elliott Sales de Andrade; #426.
* Drop decode from ConsolidatedMetadataStore. By John Kirkham; #452.

5.41. 2.4.0 149

https://github.com/sponsors/clbarnes
https://github.com/zarr-developers/zarr-python/issues/509
https://github.com/sponsors/potter420
https://github.com/zarr-developers/zarr-python/issues/440
https://github.com/sponsors/raphaeldussin
https://github.com/zarr-developers/zarr-python/issues/505
https://github.com/sponsors/shikharsg
https://github.com/zarr-developers/zarr-python/issues/525
https://github.com/sponsors/andersy005
https://github.com/zarr-developers/zarr-python/issues/531
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/512
https://github.com/sponsors/jrbourbeau
https://github.com/zarr-developers/zarr-python/issues/507
https://github.com/sponsors/mzjp2
https://github.com/zarr-developers/zarr-python/issues/495
https://github.com/sponsors/jrbourbeau
https://github.com/zarr-developers/zarr-python/issues/491
https://github.com/sponsors/jrbourbeau
https://github.com/zarr-developers/zarr-python/issues/462
https://github.com/sponsors/jrbourbeau
https://github.com/zarr-developers/zarr-python/issues/480
https://github.com/sponsors/llllllllll
https://github.com/zarr-developers/zarr-python/issues/461
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/453
https://github.com/sponsors/jrbourbeau
https://github.com/zarr-developers/zarr-python/issues/516
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/506
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/499
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/497
https://github.com/sponsors/jrbourbeau
https://github.com/zarr-developers/zarr-python/issues/492
https://github.com/sponsors/jhamman
https://github.com/zarr-developers/zarr-python/issues/393
https://github.com/zarr-developers/zarr-python/issues/470
https://github.com/sponsors/alimanfoo
https://github.com/zarr-developers/zarr-python/issues/468
https://github.com/zarr-developers/zarr-python/issues/467
https://github.com/sponsors/QuLogic
https://github.com/zarr-developers/zarr-python/issues/426
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/452

Zarr-Python, Release 2.17.1

5.42 2.3.2

5.42.1 Enhancements

* Use scandir in DirectoryStore’s getsize method. By John Kirkham; #431.

5.42.2 Bug fixes

* Add and use utility functions to simplify reading and writing JSON. By John Kirkham; #429, #430.
* Fix collections’s DeprecationWarnings. By John Kirkham; #432.

* Fix tests on big endian machines. By Elliott Sales de Andrade; #427.

5.43 2.3.1

5.43.1 Bug fixes

* Makes azure-storage-blob optional for testing. By John Kirkham; #419, #420.

5.44 2.3.0

54

4.1 Enhancements

* New storage backend, backed by Azure Blob Storage, class zarr.storage.ABSStore. All data is stored as
block blobs. By Shikhar Goenka, Tim Crone and Zain Patel; #345.

e Add “consolidated” metadata as an experimental feature: use zarr.convenience.
consolidate_metadata() to copy all metadata from the various metadata keys within a dataset hierarchy
under a single key, and zarr. convenience.open_consolidated() to use this single key. This can greatly
cut down the number of calls to the storage backend, and so remove a lot of overhead for reading remote data.
By Martin Durant, Alistair Miles, Ryan Abernathey, #268, #332, #338.

* Support has been added for structured arrays with sub-array shape and/or nested fields. By Tarik Onalan, #111,
#296.

* Adds the SQLite-backed zarr.storage.SQLiteStore class enabling an SQLite database to be used as the
backing store for an array or group. By John Kirkham, #368, #365.

« Efficient iteration over arrays by decompressing chunkwise. By Jerome Kelleher, #398, #399.

* Adds the Redis-backed zarr. storage.RedisStore class enabling a Redis database to be used as the backing
store for an array or group. By Joe Hamman, #299, #372.

¢ Adds the MongoDB-backed zarr. storage.MongoDBStore class enabling a MongoDB database to be used as
the backing store for an array or group. By Noah D Brenowitz, Joe Hamman, #299, #372, #401.

* New storage class for N5 containers. The zarr.n5.N5Store has been added, which uses zarr. storage.
NestedDirectoryStore to support reading and writing from and to N5 containers. By Jan Funke and John
Kirkham.

150

Chapter 5. Release notes

https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/431
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/429
https://github.com/zarr-developers/zarr-python/issues/430
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/432
https://github.com/sponsors/QuLogic
https://github.com/zarr-developers/zarr-python/issues/427
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/419
https://github.com/zarr-developers/zarr-python/issues/420
https://github.com/sponsors/shikarsg
https://github.com/sponsors/tjcrone
https://github.com/sponsors/mzjp2
https://github.com/zarr-developers/zarr-python/issues/345
https://github.com/sponsors/martindurant
https://github.com/sponsors/alimanfoo
https://github.com/sponsors/rabernat
https://github.com/zarr-developers/zarr-python/issues/268
https://github.com/zarr-developers/zarr-python/issues/332
https://github.com/zarr-developers/zarr-python/issues/338
https://github.com/sponsors/onalant
https://github.com/zarr-developers/zarr-python/issues/111
https://github.com/zarr-developers/zarr-python/issues/296
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/368
https://github.com/zarr-developers/zarr-python/issues/365
https://github.com/sponsors/jeromekelleher
https://github.com/zarr-developers/zarr-python/issues/398
https://github.com/zarr-developers/zarr-python/issues/399
https://github.com/sponsors/jhamman
https://github.com/zarr-developers/zarr-python/issues/299
https://github.com/zarr-developers/zarr-python/issues/372
https://github.com/sponsors/nbren12
https://github.com/sponsors/jhamman
https://github.com/zarr-developers/zarr-python/issues/299
https://github.com/zarr-developers/zarr-python/issues/372
https://github.com/zarr-developers/zarr-python/issues/401
https://github.com/sponsors/funkey
https://github.com/sponsors/jakirkham
https://github.com/sponsors/jakirkham

Zarr-Python, Release 2.17.1

5.44.2 Bug fixes

* The implementation of the zarr. storage.DirectoryStore class has been modified to ensure that writes are
atomic and there are no race conditions where a chunk might appear transiently missing during a write operation.
By sbalmer, #327, #263.

e Avoidraising in zarr.storage.DirectoryStore’s __setitem__ when file already exists. By Justin Swaney,
#272, #318.

* The required version of the Numcodecs package has been upgraded to 0.6.2, which has enabled some code
simplification and fixes a failing test involving msgpack encoding. By John Kirkham, #361, #360, #352, #355,
#324.

* Failing tests related to pickling/unpickling have been fixed. By Ryan Williams, #273, #308.
* Corrects handling of NaT in datetime64 and timedelta64 in various compressors (by John Kirkham; #344).

» Ensure DictStore contains only bytes to facilitate comparisons and protect against writes. By John Kirkham,
#350.

* Test and fix an issue (w.r.t. fill values) when storing complex data to Array. By John Kirkham, #363.
* Always use a tuple when indexing a NumPy ndarray. By John Kirkham, #376.

* Ensure when Array uses a dict-based chunk store that it only contains bytes to facilitate comparisons and
protect against writes. Drop the copy for the no filter/compressor case as this handles that case. By John Kirkham,
#3509.

5.44.3 Maintenance

» Simplify directory creation and removal in DirectoryStore.rename. By John Kirkham, #249.

e CI and test environments have been upgraded to include Python 3.7, drop Python 3.4, and upgrade all pinned
package requirements. Alistair Miles, #308.

* Start using pyup.io to maintain dependencies. Alistair Miles, #326.

 Configure flake8 line limit generally. John Kirkham, #335.

* Add missing coverage pragmas. John Kirkham, #343, #355.

 Fix missing backslash in docs. John Kirkham, #254, #353.

* Include tests for stores’ popitem and pop methods. By John Kirkham, #378, #380.

¢ Include tests for different compressors, endianness, and attributes. By John Kirkham, #378, #380.

* Test validity of stores’ contents. By John Kirkham, #359, #408.

5.45 2.2.0

5.45.1 Enhancements

¢ Advanced indexing. The Array class has several new methods and properties that enable a selection of items
in an array to be retrieved or updated. See the Advanced indexing tutorial section for more information. There
is also a notebook with extended examples and performance benchmarks. #78, #89, #112, #172.

5.45. 2.2.0 151

https://github.com/sponsors/sbalmer
https://github.com/zarr-developers/zarr-python/issues/327
https://github.com/zarr-developers/zarr-python/issues/263
https://github.com/sponsors/jmswaney
https://github.com/zarr-developers/zarr-python/issues/272
https://github.com/zarr-developers/zarr-python/issues/318
https://numcodecs.readthedocs.io/
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/361
https://github.com/zarr-developers/zarr-python/issues/360
https://github.com/zarr-developers/zarr-python/issues/352
https://github.com/zarr-developers/zarr-python/issues/355
https://github.com/zarr-developers/zarr-python/issues/324
https://github.com/sponsors/ryan-williams
https://github.com/zarr-developers/zarr-python/issues/273
https://github.com/zarr-developers/zarr-python/issues/308
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/344
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/350
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/363
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/376
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/359
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/249
https://github.com/sponsors/alimanfoo
https://github.com/zarr-developers/zarr-python/issues/308
https://github.com/sponsors/alimanfoo
https://github.com/zarr-developers/zarr-python/issues/326
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/335
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/343
https://github.com/zarr-developers/zarr-python/issues/355
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/254
https://github.com/zarr-developers/zarr-python/issues/353
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/378
https://github.com/zarr-developers/zarr-python/issues/380
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/378
https://github.com/zarr-developers/zarr-python/issues/380
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/359
https://github.com/zarr-developers/zarr-python/issues/408
https://github.com/zarr-developers/zarr-python/blob/main/notebooks/advanced_indexing.ipynb
https://github.com/zarr-developers/zarr-python/issues/78
https://github.com/zarr-developers/zarr-python/issues/89
https://github.com/zarr-developers/zarr-python/issues/112
https://github.com/zarr-developers/zarr-python/issues/172

Zarr-Python, Release 2.17.1

New package for compressor and filter codecs. The classes previously defined in the zarr. codecs module
have been factored out into a separate package called Numcodecs. The Numcodecs package also includes several
new codec classes not previously available in Zarr, including compressor codecs for Zstd and LZ4. This change
is backwards-compatible with existing code, as all codec classes defined by Numcodecs are imported into the
zarr.codecs namespace. However, it is recommended to import codecs from the new package, see the tutorial
sections on Compressors and Filters for examples. With contributions by John Kirkham; #74, #102, #120, #123,
#139.

New storage class for DBM-style databases. The zarr.storage.DBMStore class enables any DBM-style
database such as gdbm, ndbm or Berkeley DB, to be used as the backing store for an array or group. See the
tutorial section on Storage alternatives for some examples. #133, #186.

New storage class for LMDB databases. The zarr.storage.LMDBStore class enables an LMDB “Light-
ning” database to be used as the backing store for an array or group. #192.

New storage class using a nested directory structure for chunk files. The zarr.storage.
NestedDirectoryStore has been added, which is similar to the existing zarr. storage.DirectoryStore
class but nests chunk files for multidimensional arrays into sub-directories. #155, #177.

New tree() method for printing hierarchies. The Group class has a new zarr.hierarchy.Group. tree()
method which enables a tree representation of a group hierarchy to be printed. Also provides an interactive tree
representation when used within a Jupyter notebook. See the Array and group diagnostics tutorial section for
examples. By John Kirkham; #82, #140, #184.

Visitor API. The Group class now implements the hSpy visitor API, see docs for the zarr.hierarchy.Group.
visit(), zarr.hierarchy.Group.visititems() and zarr.hierarchy.Group.visitvalues() meth-
ods. By John Kirkham, #92, #122.

Viewing an array as a different dtype. The Array class has a new zarr. core.Array.astype () method,
which is a convenience that enables an array to be viewed as a different dtype. By John Kirkham, #94, #96.

New open(), save(), load() convenience functions. The function zarr. convenience.open() provides a con-
venient way to open a persistent array or group, using either a DirectoryStore or ZipStore as the backing
store. The functions zarr. convenience.save() and zarr. convenience.load() are also available and pro-
vide a convenient way to save an entire NumPy array to disk and load back into memory later. See the tutorial
section Persistent arrays for examples. #104, #105, #141, #181.

IPython completions. The Group class now implements __dir__() and _ipython_key_completions_()
which enables tab-completion for group members to be used in any IPython interactive environment. #170.

New info property; changes to __repr__. The Group and Array classes have a new info property which can
be used to print diagnostic information, including compression ratio where available. See the tutorial section
on Array and group diagnostics for examples. The string representation (__repr__) of these classes has been
simplified to ensure it is cheap and quick to compute in all circumstances. #83, #115, #132, #148.

Chunk options. When creating an array, chunks=False can be specified, which will result in an array with
a single chunk only. Alternatively, chunks=True will trigger an automatic chunk shape guess. See Chunk
optimizations for more on the chunks parameter. #1006, #107, #183.

Zero-dimensional arrays and are now supported; by Prakhar Goel, #154, #161.
Arrays with one or more zero-length dimensions are now fully supported; by Prakhar Goel, #150, #154, #160.
The .zattrs key is now optional and will now only be created when the first custom attribute is set; #121, #200.

New Group.move() method supports moving a sub-group or array to a different location within the same hier-
archy. By John Kirkham, #191, #193, #196.

ZipStore is now thread-safe; #194, #192.
New Array.hexdigest() method computes an Array’s hash with hashlib. By John Kirkham, #98, #203.

152

Chapter 5. Release notes

https://numcodecs.readthedocs.io/
https://numcodecs.readthedocs.io/
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/74
https://github.com/zarr-developers/zarr-python/issues/102
https://github.com/zarr-developers/zarr-python/issues/120
https://github.com/zarr-developers/zarr-python/issues/123
https://github.com/zarr-developers/zarr-python/issues/139
https://github.com/zarr-developers/zarr-python/issues/133
https://github.com/zarr-developers/zarr-python/issues/186
https://github.com/zarr-developers/zarr-python/issues/192
https://github.com/zarr-developers/zarr-python/issues/155
https://github.com/zarr-developers/zarr-python/issues/177
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/82
https://github.com/zarr-developers/zarr-python/issues/140
https://github.com/zarr-developers/zarr-python/issues/184
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/92
https://github.com/zarr-developers/zarr-python/issues/122
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/94
https://github.com/zarr-developers/zarr-python/issues/96
https://github.com/zarr-developers/zarr-python/issues/104
https://github.com/zarr-developers/zarr-python/issues/105
https://github.com/zarr-developers/zarr-python/issues/141
https://github.com/zarr-developers/zarr-python/issues/181
https://github.com/zarr-developers/zarr-python/issues/170
https://github.com/zarr-developers/zarr-python/issues/83
https://github.com/zarr-developers/zarr-python/issues/115
https://github.com/zarr-developers/zarr-python/issues/132
https://github.com/zarr-developers/zarr-python/issues/148
https://github.com/zarr-developers/zarr-python/issues/106
https://github.com/zarr-developers/zarr-python/issues/107
https://github.com/zarr-developers/zarr-python/issues/183
https://github.com/sponsors/newt0311
https://github.com/zarr-developers/zarr-python/issues/154
https://github.com/zarr-developers/zarr-python/issues/161
https://github.com/sponsors/newt0311
https://github.com/zarr-developers/zarr-python/issues/150
https://github.com/zarr-developers/zarr-python/issues/154
https://github.com/zarr-developers/zarr-python/issues/160
https://github.com/zarr-developers/zarr-python/issues/121
https://github.com/zarr-developers/zarr-python/issues/200
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/191
https://github.com/zarr-developers/zarr-python/issues/193
https://github.com/zarr-developers/zarr-python/issues/196
https://github.com/zarr-developers/zarr-python/issues/194
https://github.com/zarr-developers/zarr-python/issues/192
https://github.com/sponsors/jakirkham
https://github.com/zarr-developers/zarr-python/issues/98
https://github.com/zarr-developers/zarr-python/issues/203

Zarr-Python, Release 2.17.1

Improved support for object arrays. In previous versions of Zarr, creating an array with dtype=object was
possible but could under certain circumstances lead to unexpected errors and/or segmentation faults. To make it
easier to properly configure an object array, a new object_codec parameter has been added to array creation
functions. See the tutorial section on Object arrays for more information and examples. Also, runtime checks
have been added in both Zarr and Numcodecs so that segmentation faults are no longer possible, even with a
badly configured array. This API change is backwards compatible and previous code that created an object array
and provided an object codec via the filters parameter will continue to work, however a warning will be raised
to encourage use of the object_codec parameter. #208, #212.

Added support for datetime64 and timedelta64 data types; #85, #215.

Array and group attributes are now cached by default to improve performance with slow stores, e.g., stores
accessing data via the network; #220, #218, #204.

New LRUStoreCache class. The class zarr. storage. LRUStoreCache has been added and provides a means
to locally cache data in memory from a store that may be slow, e.g., a store that retrieves data from a remote
server via the network; #223.

New copy functions. The new functions zarr. convenience. copy () and zarr. convenience.copy_all()
provide a way to copy groups and/or arrays between HDFS and Zarr, or between two Zarr groups. The zarr.
convenience.copy_store () provides a more efficient way to copy data directly between two Zarr stores. #87,
#113, #137, #217.

5.45.2 Bug fixes

Fixed bug where read_only keyword argument was ignored when creating an array; #151, #179.
Fixed bugs when using a ZipStore opened in ‘w’ mode; #158, #182.

Fill values can now be provided for fixed-length string arrays; #165, #176.

Fixed a bug where the number of chunks initialized could be counted incorrectly; #97, #174.
Fixed a bug related to the use of an ellipsis (...) in indexing statements; #93, #1068, #172.

Fixed a bug preventing use of other integer types for indexing; #143, #147.

5.45.3 Documentation

Some changes have been made to the Zarr Storage Specification Version 2 document to clarify ambiguities and
add some missing information. These changes do not break compatibility with any of the material as previously
implemented, and so the changes have been made in-place in the document without incrementing the document
version number. See the section on Changes in the specification document for more information.

A new Advanced indexing section has been added to the tutorial.
A new String arrays section has been added to the tutorial (#135, #175).
The Chunk optimizations tutorial section has been reorganised and updated.

The Persistent arrays and Storage alternatives tutorial sections have been updated with new examples (#100,
#101, #103).

A new tutorial section on Pickle support has been added (#91).
A new tutorial section on Datetimes and timedeltas has been added.

A new tutorial section on Array and group diagnostics has been added.

5.45.

2.2.0 153

https://github.com/zarr-developers/zarr-python/issues/208
https://github.com/zarr-developers/zarr-python/issues/212
https://github.com/zarr-developers/zarr-python/issues/85
https://github.com/zarr-developers/zarr-python/issues/215
https://github.com/zarr-developers/zarr-python/issues/220
https://github.com/zarr-developers/zarr-python/issues/218
https://github.com/zarr-developers/zarr-python/issues/204
https://github.com/zarr-developers/zarr-python/issues/223
https://github.com/zarr-developers/zarr-python/issues/87
https://github.com/zarr-developers/zarr-python/issues/113
https://github.com/zarr-developers/zarr-python/issues/137
https://github.com/zarr-developers/zarr-python/issues/217
https://github.com/zarr-developers/zarr-python/issues/151
https://github.com/zarr-developers/zarr-python/issues/179
https://github.com/zarr-developers/zarr-python/issues/158
https://github.com/zarr-developers/zarr-python/issues/182
https://github.com/zarr-developers/zarr-python/issues/165
https://github.com/zarr-developers/zarr-python/issues/176
https://github.com/zarr-developers/zarr-python/issues/97
https://github.com/zarr-developers/zarr-python/issues/174
https://github.com/zarr-developers/zarr-python/issues/93
https://github.com/zarr-developers/zarr-python/issues/168
https://github.com/zarr-developers/zarr-python/issues/172
https://github.com/zarr-developers/zarr-python/issues/143
https://github.com/zarr-developers/zarr-python/issues/147
https://github.com/zarr-developers/zarr-python/issues/135
https://github.com/zarr-developers/zarr-python/issues/175
https://github.com/zarr-developers/zarr-python/issues/100
https://github.com/zarr-developers/zarr-python/issues/101
https://github.com/zarr-developers/zarr-python/issues/103
https://github.com/zarr-developers/zarr-python/issues/91

Zarr-Python, Release 2.17.1

* The tutorial sections on Parallel computing and synchronization and Configuring Blosc have been updated to
provide information about how to avoid program hangs when using the Blosc compressor with multiple processes
(#199, #201).

5.45.4 Maintenance

A data fixture has been included in the test suite to ensure data format compatibility is maintained; #83, #146.
* The test suite has been migrated from nosetests to pytest; #189, #225.

* Various continuous integration updates and improvements; #1 18, #124, #125, #126, #109, #114, #171.

* Bump numcodecs dependency to 0.5.3, completely remove nose dependency, #237.

¢ Fix compatibility issues with NumPy 1.14 regarding fill values for structured arrays, #222, #238, #239.

5.45.5 Acknowledgments

Code was contributed to this release by Alistair Miles, John Kirkham and Prakhar Goel.
Documentation was contributed to this release by Mamy Ratsimbazafy and Charles Noyes.

Thank you to John Kirkham, Stephan Hoyer, Francesc Alted, and Matthew Rocklin for code reviews and/or comments
on pull requests.

5.46 2.1.4

* Resolved an issue where calling hasattr on a Group object erroneously returned a KeyError. By Vincent
Schut; #88, #95.

5.47 2.1.3

* Resolved an issue with zarr. creation.array () where dtype was given as None (#80).

5.48 2.1.2

* Resolved an issue when no compression is used and chunks are stored in memory (#79).

5.49 2.1.1

Various minor improvements, including: Group objects support member access via dot notation (__getattr__); fixed
metadata caching for Array . shape property and derivatives; added Array.ndim property; fixed Array.__array__
method arguments; fixed bug in pickling Array state; fixed bug in pickling ThreadSynchronizer.

154 Chapter 5. Release notes

https://github.com/zarr-developers/zarr-python/issues/199
https://github.com/zarr-developers/zarr-python/issues/201
https://github.com/zarr-developers/zarr-python/issues/83
https://github.com/zarr-developers/zarr-python/issues/146
https://github.com/zarr-developers/zarr-python/issues/189
https://github.com/zarr-developers/zarr-python/issues/225
https://github.com/zarr-developers/zarr-python/issues/118
https://github.com/zarr-developers/zarr-python/issues/124
https://github.com/zarr-developers/zarr-python/issues/125
https://github.com/zarr-developers/zarr-python/issues/126
https://github.com/zarr-developers/zarr-python/issues/109
https://github.com/zarr-developers/zarr-python/issues/114
https://github.com/zarr-developers/zarr-python/issues/171
https://github.com/zarr-developers/zarr-python/issues/237
https://github.com/zarr-developers/zarr-python/issues/222
https://github.com/zarr-developers/zarr-python/issues/238
https://github.com/zarr-developers/zarr-python/issues/239
https://github.com/sponsors/alimanfoo
https://github.com/sponsors/jakirkham
https://github.com/sponsors/newt0311
https://github.com/sponsors/mratsim
https://github.com/sponsors/CSNoyes
https://github.com/sponsors/jakirkham
https://github.com/sponsors/shoyer
https://github.com/sponsors/FrancescAlted
https://github.com/sponsors/mrocklin
https://github.com/sponsors/vincentschut
https://github.com/sponsors/vincentschut
https://github.com/zarr-developers/zarr-python/issues/88
https://github.com/zarr-developers/zarr-python/issues/95
https://github.com/zarr-developers/zarr-python/issues/80
https://github.com/zarr-developers/zarr-python/issues/79

Zarr-Python, Release 2.17.1

5.50 2.1.0

* Group objects now support member deletion via del statement (#65).
* Added zarr.storage. TempStore class for convenience to provide storage via a temporary directory (#59).
* Fixed performance issues with zarr. storage.ZipStore class (#60).

* The Blosc extension has been modified to return bytes instead of array objects from compress and decompress
function calls. This should improve compatibility and also provides a small performance increase for compress-
ing high compression ratio data (#55).

e Added overwrite keyword argument to array and group creation methods on the zarr.hierarchy.Group
class (#71).

* Added cache_metadata keyword argument to array creation methods.

e The functions zarr.creation.open_array() and zarr.hierarchy.open_group () now accept any store
as first argument (#56).

5.51 2.0.1

The bundled Blosc library has been upgraded to version 1.11.1.

5.52 2.0.0

5.52.1 Hierarchies

Support has been added for organizing arrays into hierarchies via groups. See the tutorial section on Groups and the
zarr.hierarchy API docs for more information.

5.52.2 Filters

Support has been added for configuring filters to preprocess chunk data prior to compression. See the tutorial section
on Filters and the zarr. codecs API docs for more information.

5.52.3 Other changes

To accommodate support for hierarchies and filters, the Zarr metadata format has been modified. See the Zarr Stor-
age Specification Version 2 for more information. To migrate an array stored using Zarr version 1.x, use the zarr.
storage.migrate_I1to2 () function.

The bundled Blosc library has been upgraded to version 1.11.0.

5.50. 2.1.0 155

https://github.com/zarr-developers/zarr-python/issues/65
https://github.com/zarr-developers/zarr-python/issues/59
https://github.com/zarr-developers/zarr-python/issues/66
https://github.com/zarr-developers/zarr-python/issues/55
https://github.com/zarr-developers/zarr-python/issues/71
https://github.com/zarr-developers/zarr-python/issues/56

Zarr-Python, Release 2.17.1

5.52.4 Acknowledgments

Thanks to Matthew Rocklin, Stephan Hoyer and Francesc Alted for contributions and comments.

5.53 1.1.0

* The bundled Blosc library has been upgraded to version 1.10.0. The ‘zstd’ internal compression library is now
available within Blosc. See the tutorial section on Compressors for an example.

* When using the Blosc compressor, the default internal compression library is now ‘1z4’.

* The default number of internal threads for the Blosc compressor has been increased to a maximum of 8 (previ-
ously 4).

¢ Added convenience functions zarr.blosc.list_compressors() and zarr.blosc.get_nthreads().

5.54 1.0.0

This release includes a complete re-organization of the code base. The major version number has been bumped to
indicate that there have been backwards-incompatible changes to the API and the on-disk storage format. However,
Zarr is still in an early stage of development, so please do not take the version number as an indicator of maturity.

5.54.1 Storage

The main motivation for re-organizing the code was to create an abstraction layer between the core array logic and data
storage (#21). In this release, any object that implements the MutableMapping interface can be used as an array store.
See the tutorial sections on Persistent arrays and Storage alternatives, the Zarr Storage Specification Version 1, and
the zarr. storage module documentation for more information.

Please note also that the file organization and file name conventions used when storing a Zarr array in a directory on the
file system have changed. Persistent Zarr arrays created using previous versions of the software will not be compatible
with this version. See the zarr. storage API docs and the Zarr Storage Specification Version I for more information.

5.54.2 Compression

An abstraction layer has also been created between the core array logic and the code for compressing and decompressing
array chunks. This release still bundles the c-blosc library and uses Blosc as the default compressor, however other
compressors including zlib, BZ2 and LZMA are also now supported via the Python standard library. New compressors
can also be dynamically registered for use with Zarr. See the tutorial sections on Compressors and Configuring Blosc,
the Zarr Storage Specification Version 1, and the zarr . compressors module documentation for more information.

156 Chapter 5. Release notes

https://github.com/sponsors/mrocklin
https://github.com/sponsors/shoyer
https://github.com/sponsors/FrancescAlted
https://github.com/zarr-developers/zarr-python/issues/21

Zarr-Python, Release 2.17.1

5.54.3 Synchronization

The synchronization code has also been refactored to create a layer of abstraction, enabling Zarr arrays to be used in
parallel computations with a number of alternative synchronization methods. For more information see the tutorial
section on Parallel computing and synchronization and the zarr. sync module documentation.

5.54.4 Changes to the Blosc extension

NumPy is no longer a build dependency for the zarr.blosc Cython extension, so setup.py will run even if NumPy is
not already installed, and should automatically install NumPy as a runtime dependency. Manual installation of NumPy
prior to installing Zarr is still recommended, however, as the automatic installation of NumPy may fail or be sub-optimal
on some platforms.

Some optimizations have been made within the zarr.blosc extension to avoid unnecessary memory copies, giving a
~10-20% performance improvement for multi-threaded compression operations.

The zarr.blosc extension now automatically detects whether it is running within a single-threaded or multi-threaded
program and adapts its internal behaviour accordingly (#27). There is no need for the user to make any API calls to
switch Blosc between contextual and non-contextual (global lock) mode. See also the tutorial section on Configuring
Blosc.

5.54.5 Other changes

The internal code for managing chunks has been rewritten to be more efficient. Now no state is maintained for chunks
outside of the array store, meaning that chunks do not carry any extra memory overhead not accounted for by the store.
This negates the need for the “lazy” option present in the previous release, and this has been removed.

The memory layout within chunks can now be set as either “C” (row-major) or “F” (column-major), which can help to
provide better compression for some data (#7). See the tutorial section on Chunk memory layout for more information.

A bug has been fixed within the __getitem__ and __setitem__ machinery for slicing arrays, to properly handle
getting and setting partial slices.

5.54.6 Acknowledgments

Thanks to Matthew Rocklin, Stephan Hoyer, Francesc Alted, Anthony Scopatz and Martin Durant for contributions
and comments.

5.55 0.4.0

See v0.4.0 release notes on GitHub.

5.55. 0.4.0 157

https://github.com/zarr-developers/zarr-python/issues/27
https://github.com/zarr-developers/zarr-python/issues/7
https://github.com/sponsors/mrocklin
https://github.com/sponsors/shoyer
https://github.com/sponsors/FrancescAlted
https://github.com/sponsors/scopatz
https://github.com/sponsors/martindurant
https://github.com/zarr-developers/zarr-python/releases/tag/v0.4.0

Zarr-Python, Release 2.17.1

5.56 0.3.0

See v0.3.0 release notes on GitHub.

158 Chapter 5. Release notes

https://github.com/zarr-developers/zarr-python/releases/tag/v0.3.0

CHAPTER
SIX

LICENSE

The MIT License (MIT)
Copyright (c) 2015-2024 Zarr Developers <https://github.com/zarr-developers>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

159

https://github.com/zarr-developers

Zarr-Python, Release 2.17.1

160 Chapter 6. License

CHAPTER
SEVEN

ACKNOWLEDGMENTS

The following people have contributed to the development of Zarr by contributing code, documentation, code reviews,
comments and/or ideas:

Alistair Miles

Altay Sansal
Anderson Banihirwe
Andrew Fulton
Andrew Thomas
Anthony Scopatz
Attila Bergou
BGCMHou

Ben Jeffery

Ben Williams

Boaz Mohar

Charles Noyes

Chris Barnes

David Baddeley
Davis Bennett
Dimitri Papadopoulos Orfanos
Eduardo Gonzalez
Elliott Sales de Andrade
Eric Prestat

Eric Younkin
Francesc Alted
Greggory Lee
Gregory R. Lee

Ian Hunt-Isaak
James Bourbeau

Jan Funke

161

https://github.com/sponsors/alimanfoo
https://github.com/sponsors/tasansal
https://github.com/sponsors/andersy005
https://github.com/sponsors/andrewfulton9
https://github.com/sponsors/amcnicho
https://github.com/sponsors/scopatz
https://github.com/sponsors/abergou
https://github.com/sponsors/BGCMHou
https://github.com/sponsors/benjeffery
https://github.com/sponsors/benjaminhwilliams
https://github.com/sponsors/boazmohar
https://github.com/sponsors/CSNoyes
https://github.com/sponsors/clbarnes
https://github.com/sponsors/David-Baddeley
https://github.com/sponsors/d-v-b
https://github.com/sponsors/DimitriPapadopoulos
https://github.com/sponsors/eddienko
https://github.com/sponsors/QuLogic
https://github.com/sponsors/ericpre
https://github.com/sponsors/ericgyounkin
https://github.com/sponsors/FrancescAlted
https://github.com/sponsors/grlee77
https://github.com/sponsors/grlee77
https://github.com/sponsors/ianhi
https://github.com/sponsors/jrbourbeau
https://github.com/sponsors/funkey

Zarr-Python, Release 2.17.1

Jerome Kelleher

Joe Hamman

Joe Jevnik

John Kirkham

Josh Moore

Juan Nunez-Iglesias
Justin Swaney

Mads R. B. Kristensen
Mamy Ratsimbazafy
Martin Durant
Matthew Rocklin
Matthias Bussonnier
Mattia Almansi
Noah D Brenowitz
Oren Watson
Pavithra Eswaramoorthy
Poruri Sai Rahul
Prakhar Goel
Raphael Dussin

Ray Bell

Richard Scott
Richard Shaw

Ryan Abernathey
Ryan Williams
Saransh Chopra
Sebastian Grill
Shikhar Goenka
Shivank Chaudhary
Stephan Hoyer
Stephan Saalfeld
Tarik Onalan

Tim Crone

Tobias Kolling

Tom Augspurger
Tom White

Tommy Tran

162

Chapter 7. Acknowledgments

https://github.com/sponsors/jeromekelleher
https://github.com/sponsors/jhamman
https://github.com/sponsors/llllllllll
https://github.com/sponsors/jakirkham
https://github.com/sponsors/joshmoore
https://github.com/sponsors/jni
https://github.com/sponsors/jmswaney
https://github.com/sponsors/madsbk
https://github.com/sponsors/mratsim
https://github.com/sponsors/martindurant
https://github.com/sponsors/mrocklin
https://github.com/sponsors/Carreau
https://github.com/sponsors/malmans2
https://github.com/sponsors/nbren12
https://github.com/sponsors/orenwatson
https://github.com/sponsors/pavithraes
https://github.com/sponsors/rahulporuri
https://github.com/sponsors/newt0311
https://github.com/sponsors/raphaeldussin
https://github.com/sponsors/raybellwaves
https://github.com/sponsors/RichardScottOZ
https://github.com/sponsors/jrs65
https://github.com/sponsors/rabernat
https://github.com/sponsors/ryan-williams
https://github.com/sponsors/Saransh-cpp
https://github.com/sponsors/yetyetanotherusername
https://github.com/sponsors/shikharsg
https://github.com/sponsors/Alt-Shivam
https://github.com/sponsors/shoyer
https://github.com/sponsors/axtimwalde
https://github.com/sponsors/onalant
https://github.com/sponsors/tjcrone
https://github.com/sponsors/d70-t
https://github.com/sponsors/TomAugspurger
https://github.com/sponsors/tomwhite
https://github.com/sponsors/potter420

Zarr-Python, Release 2.17.1

Trevor Manz

Vincent Schut

Vyas Ramasubramani
Zain Patel

@ gsakkis
hailiangzhang
pmav99

sbalmer

163

https://github.com/sponsors/manzt
https://github.com/sponsors/vincentschut
https://github.com/sponsors/vyasr
https://github.com/sponsors/mzjp2
https://github.com/sponsors/gsakkis
https://github.com/sponsors/hailiangzhang
https://github.com/sponsors/pmav99
https://github.com/sponsors/sbalmer

Zarr-Python, Release 2.17.1

164 Chapter 7. Acknowledgments

CHAPTER
EIGHT

CONTRIBUTING TO ZARR

Zarr is a community maintained project. We welcome contributions in the form of bug reports, bug fixes, documenta-
tion, enhancement proposals and more. This page provides information on how best to contribute.

8.1 Asking for help

If you have a question about how to use Zarr, please post your question on StackOverflow using the “zarr” tag. If
you don’t get a response within a day or two, feel free to raise a GitHub issue including a link to your StackOverflow
question. We will try to respond to questions as quickly as possible, but please bear in mind that there may be periods
where we have limited time to answer questions due to other commitments.

8.2 Bug reports

If you find a bug, please raise a GitHub issue. Please include the following items in a bug report:

1. A minimal, self-contained snippet of Python code reproducing the problem. You can format the code nicely
using markdown, e.g.:

" “python
import zarr
g = zarr.group()
etc.

2. An explanation of why the current behaviour is wrong/not desired, and what you expect instead.

3. Information about the version of Zarr, along with versions of dependencies and the Python interpreter, and instal-
lation information. The version of Zarr can be obtained from the zarr.__version__ property. Please also state
how Zarr was installed, e.g., “installed via pip into a virtual environment”, or “installed using conda”. Informa-
tion about other packages installed can be obtained by executing pip freeze (if using pip to install packages)
or conda env export (if using conda to install packages) from the operating system command prompt. The
version of the Python interpreter can be obtained by running a Python interactive session, e.g.:

$ python
Python 3.6.1 (default, Mar 22 2017, 06:17:05)
[GCC 6.3.0 20170321] on linux

165

https://stackoverflow.com/questions/tagged/zarr
https://github.com/zarr-developers/zarr-python/issues/new
https://github.com/zarr-developers/zarr-python/issues/new

Zarr-Python, Release 2.17.1

8.3 Enhancement proposals

If you have an idea about a new feature or some other improvement to Zarr, please raise a GitHub issue first to discuss.

We very much welcome ideas and suggestions for how to improve Zarr, but please bear in mind that we are likely to be
conservative in accepting proposals for new features. The reasons for this are that we would like to keep the Zarr code
base lean and focused on a core set of functionalities, and available time for development, review and maintenance of
new features is limited. But if you have a great idea, please don’t let that stop you from posting it on GitHub, just please
don’t be offended if we respond cautiously.

8.4 Contributing code and/or documentation

8.4.1 Forking the repository

The Zarr source code is hosted on GitHub at the following location:
* https://github.com/zarr-developers/zarr-python

You will need your own fork to work on the code. Go to the link above and hit the “Fork” button. Then clone your fork
to your local machine:

$ git clone git@github.com:your-user-name/zarr-python.git
$ cd zarr-python
$ git remote add upstream git@github.com:zarr-developers/zarr-python.git

8.4.2 Creating a development environment

To work with the Zarr source code, it is recommended to set up a Python virtual environment and install all Zarr
dependencies using the same versions as are used by the core developers and continuous integration services. Assuming
you have a Python 3 interpreter already installed, and you have cloned the Zarr source code and your current working
directory is the root of the repository, you can do something like the following:

$ mkdir -p ~/pyenv/zarr-dev

$ python -m venv ~/pyenv/zarr-dev

$ source ~/pyenv/zarr-dev/bin/activate

$ pip install -r requirements_dev_minimal.txt -r requirements_dev_numpy.txt
$ pip install -e .[docs]

To verify that your development environment is working, you can run the unit tests:

[$ python -m pytest -v zarr]

166 Chapter 8. Contributing to Zarr

https://github.com/zarr-developers/zarr-python/issues/new
https://github.com/zarr-developers/zarr-python

Zarr-Python, Release 2.17.1

8.4.3 Creating a branch

Before you do any new work or submit a pull request, please open an issue on GitHub to report the bug or propose the
feature you’d like to add.

It’s best to synchronize your fork with the upstream repository, then create a new, separate branch for each piece of
work you want to do. E.g.:

git
git
git
git
git
git

checkout main

fetch upstream

rebase upstream/main

push

checkout -b shiny-new-feature
push -u origin shiny-new-feature

This changes your working directory to the ‘shiny-new-feature’ branch. Keep any changes in this branch specific to
one bug or feature so it is clear what the branch brings to Zarr.

To update this branch with latest code from Zarr, you can retrieve the changes from the main branch and perform a
rebase:

git
git

fetch upstream
rebase upstream/main

This will replay your commits on top of the latest Zarr git main. If this leads to merge conflicts, these need to be
resolved before submitting a pull request. Alternatively, you can merge the changes in from upstream/main instead of
rebasing, which can be simpler:

git
git

fetch upstream
merge upstream/main

Again, any conflicts need to be resolved before submitting a pull request.

8.4.4 Running the test suite

Zarr includes a suite of unit tests, as well as doctests included in function and class docstrings and in the tutorial
and storage spec. The simplest way to run the unit tests is to activate your development environment (see creating a
development environment above) and invoke:

[$ python -m pytest -v zarr

)

Some tests require optional dependencies to be installed, otherwise the tests will be skipped. To install all optional
dependencies, run:

[$ pip install -r requirements_dev_optional.txt

To also run the doctests within docstrings (requires optional dependencies to be installed), run:

[$ python -m pytest -v --doctest-plus zarr

To run the doctests within the tutorial and storage spec (requires optional dependencies to be installed), run:

$ python -m doctest -o NORMALIZE _WHITESPACE -o ELLIPSIS docs/tutorial.rst docs/spec/v2.
—rst

8.4.

Contributing code and/or documentation 167

Zarr-Python, Release 2.17.1

Note that some tests also require storage services to be running locally. To run the Azure Blob Service storage tests, run
an Azure storage emulator (e.g., azurite) and set the environment variable ZARR_TEST_ABS=1. If you’re using Docker
to run azurite, start the service with:

docker run --rm -p 10000:10000 mcr.microsoft.com/azure-storage/azurite azurite-blob --
—~loose --blobHost 0.0.0.0

To run the Mongo DB storage tests, run a Mongo server locally and set the environment variable ZARR_TEST_MONGO=1.
To run the Redis storage tests, run a Redis server locally on port 6379 and set the environment variable
ZARR_TEST_REDIS=1.

All tests are automatically run via GitHub Actions for every pull request and must pass before code can be accepted.
Test coverage is also collected automatically via the Codecov service, and total coverage over all builds must be 100%
(although individual builds may be lower due to Python 2/3 or other differences).

8.4.5 Code standards - using pre-commit
All code must conform to the PEP8 standard. Regarding line length, lines up to 100 characters are allowed, although
please try to keep under 90 wherever possible.

Zarr uses a set of pre-commit hooks and the pre-commit bot to format, type-check, and prettify the codebase.
pre-commit can be installed locally by running:

[$ python -m pip install pre-commit]

The hooks can be installed locally by running:

[$ pre-commit install]

This would run the checks every time a commit is created locally. These checks will also run on every commit pushed
to an open PR, resulting in some automatic styling fixes by the pre-commit bot. The checks will by default only run
on the files modified by a commit, but the checks can be triggered for all the files by running:

[$ pre-commit run --all-files J

If you would like to skip the failing checks and push the code for further discussion, use the --no-verify option with
git commit.

8.4.6 Test coverage

Zarr maintains 100% test coverage under the latest Python stable release (currently Python 3.8). Both unit tests and
docstring doctests are included when computing coverage. Running:

[$ python -m pytest -v --cov=zarr --cov-config=pyproject.toml zarr J

will automatically run the test suite with coverage and produce a coverage report. This should be 100% before code
can be accepted into the main code base.

When submitting a pull request, coverage will also be collected across all supported Python versions via the Codecov
service, and will be reported back within the pull request. Codecov coverage must also be 100% before code can be
accepted.

168 Chapter 8. Contributing to Zarr

Zarr-Python, Release 2.17.1

8.4.7 Documentation

Docstrings for user-facing classes and functions should follow the numpydoc standard, including sections for Param-
eters and Examples. All examples should run and pass as doctests under Python 3.8. To run doctests, activate your
development environment, install optional requirements, and run:

[$ python -m pytest -v --doctest-plus zarr]

Zarr uses Sphinx for documentation, hosted on readthedocs.org. Documentation is written in the RestructuredText
markup language (.rst files) in the docs folder. The documentation consists both of prose and API documentation.
All user-facing classes and functions should be included in the API documentation, under the docs/api folder. Any
new features or important usage information should be included in the tutorial (docs/tutorial.rst). Any changes
should also be included in the release notes (docs/release.rst).

The documentation can be built locally by running:

$ cd docs
$ make clean; make html
$ open _build/html/index.html

The resulting built documentation will be available in the docs/_build/html folder.

8.5 Development best practices, policies and procedures

The following information is mainly for core developers, but may also be of interest to contributors.

8.5.1 Merging pull requests

Pull requests submitted by an external contributor should be reviewed and approved by at least one core developers
before being merged. Ideally, pull requests submitted by a core developer should be reviewed and approved by at least
one other core developers before being merged.

Pull requests should not be merged until all CI checks have passed (GitHub Actions Codecov) against code that has
had the latest main merged in.

8.5.2 Compatibility and versioning policies

Because Zarr is a data storage library, there are two types of compatibility to consider: API compatibility and data
format compatibility.

API compatibility

All functions, classes and methods that are included in the API documentation (files under docs/api/*.rst) are
considered as part of the Zarr public API, except if they have been documented as an experimental feature, in which
case they are part of the experimental API.

Any change to the public API that does not break existing third party code importing Zarr, or cause third party code
to behave in a different way, is a backwards-compatible API change. For example, adding a new function, class
or method is usually a backwards-compatible change. However, removing a function, class or method; removing an
argument to a function or method; adding a required argument to a function or method; or changing the behaviour of
a function or method, are examples of backwards-incompatible API changes.

8.5. Development best practices, policies and procedures 169

https://numpydoc.readthedocs.io/en/stable/format.html#docstring-standard

Zarr-Python, Release 2.17.1

If a release contains no changes to the public API (e.g., contains only bug fixes or other maintenance work), then the
micro version number should be incremented (e.g., 2.2.0 -> 2.2.1). If a release contains public API changes, but all
changes are backwards-compatible, then the minor version number should be incremented (e.g., 2.2.1 -> 2.3.0). If a
release contains any backwards-incompatible public API changes, the major version number should be incremented
(e.g.,2.3.0->3.0.0).

Backwards-incompatible changes to the experimental API can be included in a minor release, although this should be
minimised if possible. I.e., it would be preferable to save up backwards-incompatible changes to the experimental API
to be included in a major release, and to stabilise those features at the same time (i.e., move from experimental to public
API), rather than frequently tinkering with the experimental API in minor releases.

Data format compatibility

The data format used by Zarr is defined by a specification document, which should be platform-independent and contain
sufficient detail to construct an interoperable software library to read and/or write Zarr data using any programming
language. The latest version of the specification document is available from the Specifications page.

Here, data format compatibility means that all software libraries that implement a particular version of the Zarr
storage specification are interoperable, in the sense that data written by any one library can be read by all others. It
is obviously desirable to maintain data format compatibility wherever possible. However, if a change is needed to the
storage specification, and that change would break data format compatibility in any way, then the storage specification
version number should be incremented (e.g., 2 -> 3).

The versioning of the Zarr software library is related to the versioning of the storage specification as follows. A
particular version of the Zarr library will implement a particular version of the storage specification. For example,
Zarr version 2.2.0 implements the Zarr storage specification version 2. If a release of the Zarr library implements a
different version of the storage specification, then the major version number of the Zarr library should be incremented.
E.g., if Zarr version 2.2.0 implements the storage spec version 2, and the next release of the Zarr library implements
storage spec version 3, then the next library release should have version number 3.0.0. Note however that the major
version number of the Zarr library may not always correspond to the spec version number. For example, Zarr versions
2.x, 3.x, and 4.x might all implement the same version of the storage spec and thus maintain data format compatibility,
although they will not maintain API compatibility. The version number of the storage specification that is currently
implemented is stored under the zarr.meta.ZARR_FORMAT variable.

Note that the Zarr test suite includes a data fixture and tests to try and ensure that data format compatibility is not
accidentally broken. See the test_format_compatibility () functioninthe zarr.tests.test_storage module
for details.

8.5.3 When to make a release

Ideally, any bug fixes that don’t change the public API should be released as soon as possible. It is fine for a micro
release to contain only a single bug fix.

When to make a minor release is at the discretion of the core developers. There are no hard-and-fast rules, e.g., it is fine
to make a minor release to make a single new feature available; equally, it is fine to make a minor release that includes
a number of changes.

Major releases obviously need to be given careful consideration, and should be done as infrequently as possible, as they
will break existing code and/or affect data compatibility in some way.

170 Chapter 8. Contributing to Zarr

Zarr-Python, Release 2.17.1

8.5.4 Release procedure

Note: Most of the release process is now handled by github workflow which should automatically push a release to
PyPlI if a tag is pushed.

Before releasing, make sure that all pull requests which will be included in the release have been properly documented
in docs/release.rst.

To make a new release, go to https://github.com/zarr-developers/zarr-python/releases and click “Draft a new release”.
Choose a version number prefixed with a v (e.g. v0.0.0). For pre-releases, include the appropriate suffix (e.g. v0.0.0al
or v0.0.0rc2).

Set the description of the release to:

[See release notes https://zarr.readthedocs.io/en/stable/release.html#release-0-0-0

replacing the correct version numbers. For pre-release versions, the URL should omit the pre-release suffix, e.g. “al”
or “rcl”.

Click on “Generate release notes” to auto-file the description.

After creating the release, the documentation will be built on https://readthedocs.io. Full releases will be available
under /stable while pre-releases will be available under /latest.

Also review and merge the https://github.com/conda-forge/zarr-feedstock pull request that will be automatically gen-
erated.

Version: 2.17.1
Download documentation: PDF/Zipped HTML
Useful links: Installation | Source Repository | Issue Tracker | Zulip Chat

Zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.

Getting Started

New to Zarr? Check out the getting started guide. It contains an introduction to Zarr’s main concepts and links to
additional tutorials.

To the getting started guide

Tutorial
The tutorial provides working examples of Zarr classes and functions.

To the Tutorial

API Reference

The reference guide contains a detailed description of the functions, modules, and objects included in Zarr. The refer-
ence describes how the methods work and which parameters can be used. It assumes that you have an understanding
of the key concepts.

To the api reference guide

8.5. Development best practices, policies and procedures 171

https://github.com/zarr-developers/zarr-python/releases
https://readthedocs.io
https://zarr.readthedocs.io/en/stable
https://zarr.readthedocs.io/en/latest
https://github.com/conda-forge/zarr-feedstock
https://readthedocs.org/projects/zarr/downloads/
installation.html
https://github.com/zarr-developers/zarr-python
https://github.com/zarr-developers/zarr-python/issues
https://ossci.zulipchat.com/

Zarr-Python, Release 2.17.1

Contributor’s Guide

Want to contribute to Zarr? We welcome contributions in the form of bug reports, bug fixes, documentation, enhance-
ment proposals and more. The contributing guidelines will guide you through the process of improving Zarr.

To the contributor’s guide

172 Chapter 8. Contributing to Zarr

PYTHON MODULE INDEX

zarr._storage.store, 117
zarr._storage.v3, 109
zarr._storage.v3_storage_transformers, 117
zarr.attrs, 107
zarr.codecs, 107
zarr.convenience, 94
zarr.core, 39
zarr.creation, 33
zarr.hierarchy, 64
zarr.n5, 93
zarr.storage, 78
zarr.sync, 108

173

Zarr-Python, Release 2.17.1

174 Python Module Index

Symbols

__contains__() (zarr.hierarchy.Group method), 68
__delitem__Q) (zarr.attrs.Attributes method), 107
__enter__(Q) (zarr.hierarchy.Group method), 69
__exit__Q (zarr.hierarchy.Group method), 69
__getitem__(Q) (zarr.attrs.Attributes method), 107
__getitem__Q) (zarr.hierarchy.Group method), 68
__iter__ Q) (zarr.attrs.Attributes method), 107
__iter__Q (zarr.hierarchy.Group method), 68
__len__Q) (zarr.attrs.Attributes method), 107
__len__Q) (zarr.hierarchy.Group method), 68
__setitem__Q) (zarr.attrs.Attributes method), 107

A

ABSStore (class in zarr.storage), 87
append () (zarr.core.Array method), 45
Array (class in zarr.core), 39

array () (in module zarr.creation), 36
array () (zarr.hierarchy.Group method), 77
array_keys() (zarr.hierarchy.Group method), 70
arrays () (zarr.hierarchy.Group method), 70
asdict) (zarr.attrs.Attributes method), 107
astype(Q) (zarr.core.Array method), 45
Attributes (class in zarr.attrs), 107

attrs (zarr.core.Array attribute), 42

B

basename (zarr.core.Array attribute), 42
blocks (zarr.core.Array attribute), 42

C

cdata_shape (zarr.core.Array attribute), 42

chunk_store (zarr.core.Array attribute), 43

chunks (zarr.core.Array attribute), 43

close() (zarr.storage. DBMStore method), 84

close() (zarr.storage. LMDBStore method), 85

close() (zarr.storage.SQLiteStore method), 86

close() (zarr.storage.ZipStore method), 82

compressor (zarr.core.Array attribute), 43

consolidate_metadata() (in module
zarr.convenience), 105

INDEX

ConsolidatedMetadataStore (class in zarr.storage),
89
ConsolidatedMetadataStoreV3
zarr._storage.v3), 117
contains_array() (in module zarr.storage), 92
contains_group () (in module zarr.storage), 92
copy Q) (in module zarr.convenience), 99
copy_all () (in module zarr.convenience), 101
copy_store() (in module zarr.convenience), 102
create() (in module zarr.creation), 33
create() (zarr.hierarchy.Group method), 77
create_dataset () (zarr.hierarchy.Group method), 75
create_group() (zarr.hierarchy.Group method), 74
create_groups () (zarr.hierarchy.Group method), 75

D

DBMStore (class in zarr.storage), 83

DBMStoreV3 (class in zarr._storage.v3), 113
digest () (zarr.core.Array method), 46
DirectoryStore (class in zarr.storage), 78
DirectoryStoreV3 (class in zarr._storage.v3), 109
dtype (zarr.core.Array attribute), 43

E

empty () (in module zarr.creation), 35

empty () (zarr.hierarchy.Group method), 77
empty_like() (in module zarr.creation), 39
empty_like() (zarr.hierarchy.Group method), 77

F

fill_value (zarr.core.Array attribute), 43
filters (zarr.core.Array attribute), 43
flush Q) (zarr.storage. DBMStore method), 84
flush) (zarr.storage. LMDBStore method), 85
flush) (zarr.storage.ZipStore method), 82
FSStore (class in zarr.storage), 88

FSStoreV3 (class in zarr._storage.v3), 109
full Q (in module zarr.creation), 36

full) (zarr.hierarchy.Group method), 77
full_like () (in module zarr.creation), 39
full_like() (zarrhierarchy.Group method), 77

(class in

175

Zarr-Python, Release 2.17.1

G

get_basic_selection() (zarr.core.Array method), 47

get_block_selection() (zarr.core.Array method), 49

get_coordinate_selection() (zarr.core.Array
method), 50

get_mask_selection() (zarr.core.Array method), 51

get_orthogonal_selection() (zarr.core.Array
method), 52

getsize() (in module zarr.storage), 92

Group (class in zarr.hierarchy), 66

group () (in module zarr.hierarchy), 64

group_keys () (zarr.hierarchy.Group method), 69

groups () (zarr.hierarchy.Group method), 69

H

hexdigest () (zarr.core.Array method), 54

info (zarr.core.Array attribute), 43

info_items () (zarr.core.Array method), 54
init_array(Q (in module zarr.storage), 90
init_group Q) (in module zarr.storage), 92
initialized (zarr.core.Array attribute), 43
invalidate() (zarr.storage.LRUStoreCache method),

87

invalidate_keys() (zarr.storage.LRUStoreCache
method), 87

invalidate_values() (zarr.storage.LRUStoreCache
method), 87

is_view (zarr.core.Array attribute), 43
islice(Q) (zarr.core.Array method), 54
itemsize (zarr.core.Array attribute), 43

K

keys () (zarr.attrs.Attributes method), 107
KVStoreV3 (class in zarr._storage.v3), 109

L

listdir () (in module zarr.storage), 92
LMDBStore (class in zarr.storage), 84
LMDBStoreV3 (class in zarr._storage.v3), 114
load () (in module zarr.convenience), 96
LRUStoreCache (class in zarr.storage), 87
LRUStoreCacheV3 (class in zarr._storage.v3), 116

M

MemoryStore (class in zarr.storage), 78
MemoryStoreV3 (class in zarr._storage.v3), 109
meta_array (zarr.core.Array attribute), 43
migrate_1to2() (in module zarr.storage), 93
module
zarr._storage.store, 117
zarr._storage.v3, 109

zarr._storage.v3_storage_transformers,
117

zarr.attrs, 107

zarr.codecs, 107

zarr.convenience, 94

zarr.core, 39

zarr.creation, 33

zarr.hierarchy, 64

zarr.n5, 93

zarr.storage, 78

zarr.sync, 108
MongoDBStore (class in zarr.storage), 86
MongoDBStoreV3 (class in zarr._storage.v3), 112
move () (zarrhierarchy.Group method), 77

N

N5Store (class in zarr.n5), 93

name (zarr.core.Array attribute), 43

nbytes (zarr.core.Array attribute), 44
nbytes_stored (zarr.core.Array attribute), 44
nchunks (zarr.core.Array attribute), 44
nchunks_initialized (zarr.core.Array attribute), 44
ndim (zarr.core.Array attribute), 44
NestedDirectoryStore (class in zarr.storage), 80

oindex (zarr.core.Array attribute), 44

ones () (in module zarr.creation), 36

ones () (zarr.hierarchy.Group method), 77

ones_like() (in module zarr.creation), 39

ones_like () (zarr.hierarchy.Group method), 77

open() (in module zarr.convenience), 94

open_array () (in module zarr.creation), 37

open_consolidated() (in module zarr.convenience),
106

open_group () (in module zarr.hierarchy), 65

open_like() (in module zarr.creation), 39

order (zarr.core.Array attribute), 44

P

path (zarr.core.Array attribute), 44
ProcessSynchronizer (class in zarr.sync), 108
put O (zarr.attrs.Attributes method), 107

R

read_only (zarr.core.Array attribute), 44

RedisStore (class in zarr.storage), 86

RedisStoreV3 (class in zarr._storage.v3), 112
refresh() (zarr.attrs.Attributes method), 108

rename () (in module zarr.storage), 92
require_dataset () (zarr.hierarchy.Group method), 76
require_group() (zarr.hierarchy.Group method), 75
require_groups () (zarr.hierarchy.Group method), 75

176

Index

Zarr-Python, Release 2.17.1

resize() (zarr.core.Array method), 55
rmdir () (in module zarr.storage), 92
RmdirV3 (class in zarr._storage.v3), 109

S

save () (in module zarr.convenience), 95

save_array() (in module zarr.convenience), 97

save_group () (in module zarr.convenience), 97

set_basic_selection() (zarr.core.Array method), 55

set_block_selection() (zarr.core.Array method), 57

set_coordinate_selection() (zarr.core.Array
method), 58

set_mask_selection() (zarr.core.Array method), 59

set_orthogonal_selection() (zarr.core.Array
method), 60

shape (zarr.core.Array attribute), 44

ShardingStorageTransformer (class in

zarr._storage.v3_storage_transformers), 117
size (zarr.core.Array attribute), 44
SQLiteStore (class in zarr.storage), 85
SQLiteStoreV3 (class in zarr._storage.v3), 115
StorageTransformer (class in zarr._storage.store), 117
store (zarr.core.Array attribute), 44
synchronizer (zarr.core.Array attribute), 44

T

TempStore (class in zarr.storage), 79
ThreadSynchronizer (class in zarr.sync), 108
tree() (in module zarr.convenience), 104
tree() (zarr.hierarchy.Group method), 73

U

update () (zarr.attrs.Attributes method), 108

\Y

view() (zarr.core.Array method), 62

vindex (zarr.core.Array attribute), 44

visit () (zarr.hierarchy.Group method), 71
visititems() (zarr.hierarchy.Group method), 73
visitkeys() (zarr.hierarchy.Group method), 72
visitvalues() (zarr.hierarchy.Group method), 73

W

write_empty_chunks (zarr.core.Array attribute), 44

Z

zarr._storage.store
module, 117
zarr._storage.v3
module, 109
zarr._storage.v3_storage_transformers
module, 117
zarr.attrs

module, 107
zarr.codecs
module, 107
zarr.convenience
module, 94
zarr.core
module, 39
zarr.creation
module, 33
zarr.hierarchy
module, 64
zarr.n5
module, 93
zarr.storage
module, 78
zarr.sync
module, 108

zeros () (in module zarr.creation), 36

zeros () (zarr.hierarchy.Group method), 77
zeros_like() (in module zarr.creation), 39
zeros_like() (zarr.hierarchy.Group method), 77
ZipStore (class in zarr.storage), 81

ZipStoreV3 (class in zarr._storage.v3), 111

Index

177

	Getting Started
	Highlights
	Contributing
	Projects using Zarr
	Installation

	Tutorial
	Creating an array
	Reading and writing data
	Persistent arrays
	Resizing and appending
	Compressors
	Filters
	Groups
	Array and group diagnostics
	User attributes
	Advanced indexing
	Indexing with coordinate arrays
	Indexing with a mask array
	Orthogonal indexing
	Block Indexing
	Indexing fields in structured arrays

	Storage alternatives
	Distributed/cloud storage
	IO with fsspec
	Accessing ZIP archives on S3
	Consolidating metadata

	Copying/migrating data
	String arrays
	Object arrays
	Ragged arrays

	Chunk optimizations
	Chunk size and shape
	Chunk memory layout
	Empty chunks
	Changing chunk shapes (rechunking)

	Parallel computing and synchronization
	Pickle support
	Datetimes and timedeltas
	Usage tips
	Copying large arrays
	Configuring Blosc

	API reference
	Array creation (zarr.creation)
	The Array class (zarr.core)
	Classes
	Array

	Groups (zarr.hierarchy)
	Storage (zarr.storage)
	N5 (zarr.n5)
	Convenience functions (zarr.convenience)
	Compressors and filters (zarr.codecs)
	The Attributes class (zarr.attrs)
	Synchronization (zarr.sync)
	V3 Specification Implementation(zarr._storage.v3)
	Indices and tables

	Specifications
	Zarr Storage Specification Version 3
	Zarr Storage Specification Version 2
	Status
	Storage
	Arrays
	Metadata
	Data type encoding
	Fill value encoding
	Chunks
	Filters

	Hierarchies
	Logical storage paths
	Groups

	Attributes
	Examples
	Storing a single array
	Storing multiple arrays in a hierarchy

	Changes
	Version 2 clarifications
	Changes from version 1 to version 2

	Zarr Storage Specification Version 1
	Status
	Storage
	Metadata
	Data type encoding

	Chunks
	Attributes
	Example

	Release notes
	Unreleased
	2.17.1
	Enhancements
	Docs
	Maintenance

	2.17.0
	Enhancements
	Docs
	Maintenance

	2.16.1
	Maintenance

	2.16.0
	Enhancements
	Maintenance

	2.15.0
	Enhancements
	Maintenance
	Documentation
	Bug fixes

	2.14.2
	Bug fixes

	2.14.1
	Documentation

	2.14.0
	Major changes
	Bug fixes

	2.13.6
	Maintenance

	2.13.5
	Bug fixes

	2.13.4
	Appreciation
	Enhancements
	Bug fixes
	Documentation
	Maintenance

	2.13.3
	2.13.2
	2.13.1
	2.13.0
	Major changes
	Bug fixes
	Documentation
	Maintenance

	2.12.0
	Enhancements
	Bug fixes
	Documentation
	Maintenance

	2.11.3
	Bug fixes

	2.11.2
	Bug fixes

	2.11.1
	Bug fixes

	2.11.0
	Enhancements
	Bug fixes
	Documentation
	Maintenance

	2.10.3
	Bug fixes

	2.10.2
	Bug fixes

	2.10.1
	Bug fixes

	2.10.0
	Enhancements
	Bug fixes

	2.9.5
	Bug fixes

	2.9.4
	Bug fixes

	2.9.3
	Maintenance

	2.9.2
	Maintenance

	2.9.1
	Maintenance

	2.9.0
	Enhancements
	Documentation
	Bug fixes
	Maintenance

	2.8.3
	Bug fixes

	2.8.2
	Documentation
	Bug fixes
	Maintenance

	2.8.1
	Bug fixes

	2.8.0
	V2 Specification Update

	2.7.1
	Bug fixes

	2.7.0
	Enhancements
	Bug fixes

	2.6.1
	2.6.0
	2.5.0
	2.4.0
	Enhancements
	Bug fixes
	Documentation
	Maintenance

	2.3.2
	Enhancements
	Bug fixes

	2.3.1
	Bug fixes

	2.3.0
	Enhancements
	Bug fixes
	Maintenance

	2.2.0
	Enhancements
	Bug fixes
	Documentation
	Maintenance
	Acknowledgments

	2.1.4
	2.1.3
	2.1.2
	2.1.1
	2.1.0
	2.0.1
	2.0.0
	Hierarchies
	Filters
	Other changes
	Acknowledgments

	1.1.0
	1.0.0
	Storage
	Compression
	Synchronization
	Changes to the Blosc extension
	Other changes
	Acknowledgments

	0.4.0
	0.3.0

	License
	Acknowledgments
	Contributing to Zarr
	Asking for help
	Bug reports
	Enhancement proposals
	Contributing code and/or documentation
	Forking the repository
	Creating a development environment
	Creating a branch
	Running the test suite
	Code standards - using pre-commit
	Test coverage
	Documentation

	Development best practices, policies and procedures
	Merging pull requests
	Compatibility and versioning policies
	API compatibility
	Data format compatibility

	When to make a release
	Release procedure

	Python Module Index
	Index

